
Prof. Kavita Bala and Prof. Hakim Weatherspoon

CS 3410, Spring 2014

Computer Science

Cornell University

See P&H Appendix B.7. B.8, B.10, B.11

PC

imm

memory

memory

din dout

addr

target

offset cmp control

=?

new

pc

register
file

inst

extend

+4 +4

A Single cycle processor

alu

• We can generalize 1-bit Full Adders to 32 bits, 64 bits …

A0 B0

S0

A1 B1

S1

A2 B2

S2

A3 B3

S3

C0

• We can generalize 1-bit Full Adders to 32 bits, 64 bits …

S0 S1 S2 S3

over

flow

A0

B0

A1

B1

A2

B2

A3

B3

mux mux mux mux

0=add
1=sub

d
e

co
d

er

8

8

S

A

B
8

0=add
1=sub

ad
d

e
r

m
u

x d
e

co
d

er

8

8
8

8

8

S

A

B
8

0=add
1=sub

• We can generalize 1-bit Full Adders to 32 bits, 64 bits …

• How long does it take to compute a result?

S0 S1 S2 S3

over

flow

A0

B0

A1

B1

A2

B2

A3

B3

mux mux mux mux

0=add
1=sub

• We can generalize 1-bit Full Adders to 32 bits, 64 bits …

• How long does it take to compute a result?

• A) 2 ns

• B) 2 gate delays

• C) 10 ns

• D) 10 gate delays

• E) 8 gate delays

• We can generalize 1-bit Full Adders to 32 bits, 64 bits …

• How long does it take to compute a result?

S0 S1 S2 S3

over

flow

A0

B0

A1

B1

A2

B2

A3

B3

mux mux mux mux

0=add
1=sub

• We can generalize 1-bit Full Adders to 32 bits, 64 bits …

• How long does it take to compute a result?

• Can we store the result?

S0 S1 S2 S3

over

flow

A0

B0

A1

B1

A2

B2

A3

B3

mux mux mux mux

0=add
1=sub

Speed of a circuit is affected by the number of
gates in series (on the critical path or the
deepest level of logic)

Combinational
Logic

tcombinational

in
p

u
ts

ar

ri
ve

o
u

tp
u

ts

ex
p

ec
te

d

A3 B3

S3

C4

A1 B1

S1

A2 B2

S2

A0 B0

C0

S0

C1 C2 C3

• First full adder, 2 gate delay
• Second full adder, 2 gate delay
• …

Carry ripples from lsb to msb

Until now is combinationial logic
• Output is computed when inputs are present

• System has no internal state

• Nothing computed in the present can depend on
what happened in the past!

Need a way to record data

Need a way to build stateful circuits

Need a state-holding device

Finite State Machines

Inputs Combinational
circuit

Outputs N M

State
• How do we store one bit?

• Attempts at storing (and changing) one bit
– Set-Reset Latch

– D Latch

– D Flip-Flops

– Master-Slave Flip-Flops

• Register: storing more than one bit, N-bits

Basic Building Blocks
• Decoders and Encoders

Finite State Machines (FSM)
• How do we design logic circuits with state?

• Types of FSMs: Mealy and Moore Machines

• Examples: Serial Adder and a Digital Door Lock

How do we store store one bit?

B

A

C

0 1

Does not work!

• Unstable

• Oscillates wildly!

B

A

C

1 0

0 1

In stable state, A = B

How do we change the state?

A B

A B

1

A B

1
0 0

A Simple Device

• Stable and unstable equilibria?

B R

Q

Q

A S

Set-Reset (S-R) Latch
Stores a value Q and its complement

S R Q Q

0 0

0 1

1 0

1 1

S

R

Q

Q

A B OR NOR

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

Set-Reset (S-R) Latch
Stores a value Q and its complement

S R Q Q

0 0

0 1 ? ?

1 0

1 1

S

R

Q

Q

A B OR NOR

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

0

1

0

Q will be 0 if R is 1

1

𝑸 will be 1

S R Q Q

0 0

0 1 0 1

1 0

1 1

Set-Reset (S-R) Latch
Stores a value Q and its complement

S R Q Q

0 0

0 1 0 1

1 0 ? ?

1 1

S

R

Q

Q

A B OR NOR

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

1

0

1

Q will be 1

0

𝑸 will be 0 if S is 1

S R Q Q

0 0

0 1 0 1

1 0 1 0

1 1

What are the values for Q and Q ?
a) 0 and 0
b) 0 and 1
c) 1 and 0
d) 1 and 1

Set-Reset (S-R) Latch
Stores a value Q and its complement

S R Q Q

0 0 ? ?

0 1 0 1

1 0 1 0

1 1

S

R

Q

Q

A B OR NOR

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

0

0

1

If Q is 1, will stay 1
if Q is 0, will stay 0

0

If 𝑸 is 0 will stay 0
If 𝑸 is 1 will stay 1

S R Q Q

0 0 Q Q

0 1 0 1

1 0 1 0

1 1

1

Set-Reset (S-R) Latch
Stores a value Q and its complement

S R Q Q

0 0 Q Q

0 1 0 1

1 0 1 0

1 1 ? ?

S

R

Q

Q

A B OR NOR

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

1

1

0

Q will be 0 since R is 1

0

𝑸 will be 0 since S is 1

What happens when S,R changes from 1,1 to 0,0?

Set-Reset (S-R) Latch
Stores a value Q and its complement

S R Q Q

0 0 Q Q

0 1 0 1

1 0 1 0

1 1 ? ?

S

R

Q

Q

A B OR NOR

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

10

1 0

01 0 1

S R Q Q

0 0 Q Q

0 1 0 1

1 0 1 0

1 1 forbidden

What happens when S,R changes from 1,1 to 0,0?

Q and Q become unstable and will oscillate wildly
between values 0,0 to 1,1 to 0,0 to 1,1 …

0 1 0 01 0 0 1 0 1 01 0 1 0 0

Set-Reset (S-R) Latch
Stores a value Q and its complement

S

R

Q

Q

S

R

Q

Q

S R Q Q

0 0 Q Q

0 1 0 1

1 0 1 0

1 1 forbidden

S R Q Q

0 0 Q Q hold

0 1 0 1 reset

1 0 1 0 set

1 1 forbidden

Set-Reset (SR) Latch can store one bit and we can
change the value of the stored bit. But, SR Latch
has a forbidden state.

How do we avoid the forbidden state of S-R Latch?

Fill in the truth table?

D

S

R

Q

Q

D

D Q Q

0

1

S

R

Q

Q

A B OR NOR

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

D

S

R

Q

Q

D

D Q Q

0 0 1

1 1 0

S

R

Q

Q

A B OR NOR

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

Fill in the truth table?

Data (D) Latch

• Easier to use than an SR latch
• No possibility of entering an undefined state

When D changes, Q changes

– … immediately (…after a delay of 2 Ors and 2 NOTs)

Need to control when the output changes

Set-Reset (SR) Latch can store one bit and we can
change the value of the stored bit. But, SR Latch
has a forbidden state.

(Unclocked) D Latch can store and change a bit like
an SR Latch while avoiding the forbidden state.

How do we coordinate state changes to a D Latch?

Clock helps coordinate state changes

• Usually generated by an oscillating crystal

• Fixed period; frequency = 1/period

1

0
clock

period

clock

high

clock

low

rising

edge
falling

edge

Level sensitive
• State changes when clock is high (or low)

Edge triggered
• State changes at clock edge

positive edge-triggered

negative edge-triggered

Clock Methodology

•Negative edge, synchronous

– Edge-Triggered: Signals must be stable near falling clock edge

•Positive edge synchronous

clk

compute save

tsetup thold

compute save compute

tcombinational

S

R

D Q

Q

S

R

D

clk

Q

Q

clk D Q Q

0 0

0 1

1 0

1 1

Fill in the truth table

clk D Q Q

0 0

0 1

1 0

1 1

S

R

D

clk

Q

Q

S R Q Q

0 0 Q Q hold

0 1 0 1 reset

1 0 1 0 set

1 1 forbidden

clk D Q Q

0 0 Q Q

0 1 Q Q

1 0 0 1

1 1 1 0

Fill in the truth table

S

R

D

clk

Q

Q

clk D Q Q

0 0 Q Q

0 1 Q Q

1 0 0 1

1 1 1 0

clk

D

Q

Level Sensitive D Latch
Clock high:
 set/reset (according to D)
Clock low:
 keep state (ignore D)

D Flip-Flop
•Edge-Triggered

•Data captured when clock
is high

•Output changes only on
falling edges

D Q

Q

D Q

Q L L

clk

D

X

Q

c

X

c

Q

Q

D

clk
0

0

1

0 1

Activity#1: Fill in timing graph and values for X and Q

D Flip-Flop
•Edge-Triggered

•Data captured when clock
is high

•Output changes only on
falling edges

D Q

Q

D Q

Q L L

clk

D

X

Q

c

X

c

Q

Q

D

clk
1 0

1 0

0 1

1 0 0 1

Set-Reset (SR) Latch can store one bit and we can
change the value of the stored bit. But, SR Latch has a
forbidden state.

(Unclocked) D Latch can store and change a bit like an
SR Latch while avoiding a forbidden state.

An Edge-Triggered D Flip-Flip (aka Master-Slave D Flip-
Flip) stores one bit. The bit can be changed in a
synchronized fashion on the edge of a clock signal.

How do we store more than one bit, N bits?

Register

•D flip-flops in parallel

•shared clock

•extra clocked inputs:
write_enable, reset, …

clk

D0

D3

D1

D2

4 4
4-bit

reg

clk

Set-Reset (SR) Latch can store one bit and we can
change the value of the stored bit. But, SR Latch has a
forbidden state.

(Unclocked) D Latch can store and change a bit like an
SR Latch while avoiding a forbidden state.

An Edge-Triggered D Flip-Flip (aka Master-Slave D Flip-
Flip) stores one bit. The bit can be changed in a
synchronized fashion on the edge of a clock signal.

An N-bit register stores N-bits. It is be created with N
D-Flip-Flops in parallel along with a shared clock.

4-bit
reg

Clk

Decoder

+1

4

4 4

16 4

4-bit
reg

Clk

Run

WE R

Reset

Decoder

A[4] 1 = 0001 =B[4]

S[4]

Cout +1

4

4 4

16 4

7-Segment LED

• photons emitted when
electrons fall into
holes

d7 d6 d5 d4

d3 d2 d1 d0

7-Segment LED

• photons emitted when
electrons fall into
holes

d7 d6 d5 d4

d3 d2 d1 d0

3 inputs

• encode 0 – 7 in
binary

7 outputs

• one for each LED

7
LE

D
 d

e
co

d
e

b2 b1 b0 d6 d5 d4 d3 d2 d1 d0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

d0

d1
d2

d3

d4

d5

d6

b2 b1 b0 d6 d5 d4 d3 d2 d1 d0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1 1 0 0 0 0 1 1

d0

d1
d2

d3

d4

d5

d6

b2 b1 b0 d6 d5 d4 d3 d2 d1 d0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1 1 1 0 1 1 1

1 0 0 0 0 0 1

0 1 1 1 0 1 1

1 1 0 1 0 1 1

1 0 0 1 1 0 1

1 1 0 1 1 1 0

1 1 1 1 1 1 0

1 0 0 0 0 1 1

binary
encoder

2N

N binary
decoder

N

2N

M

u
lt

ip
le

xo
r

N

M

N

N

N

N

. .
 .

0

1

2

2M-1

1

2

3

4

5

6

7

0

en
co

d
er

N

. . .

. . .

Log2(N) outputs wires N Input wires

e.g. Voting:
Can only vote for one out of N
candidates, so N inputs.

But can encode vote efficiently
with binary encoding.

a

b

1

c

d

2

3

4

o1

A 3-bit

encoder
with 4 inputs

for simplicity

a b c d

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

o0

o1

o2

a

b

1

c

d

2

3

4

o1

A 3-bit

encoder
with 4 inputs

for simplicity

a b c d o2 o1 o0

0 0 0 0 0 0 0

1 0 0 0 0 0 1

0 1 0 0 0 1 0

0 0 1 0 0 1 1

0 0 0 1 1 0 0

o0

o1

o2

• o2 = abcd

• o1 = abcd + abcd

• o0 = abcd + abcd

Ballots
The 3410 optical scan

 vote reader

machine

d
et

ec
t

enc

8 3 7

7LED

decode

We can now build interesting devices with sensors

• Using combinationial logic

We can also store data values (aka Sequential Logic)

• In state-holding elements

• Coupled with clocks

Make sure to go to your Lab Section this week

Completed Lab1 due before winter break, Friday, Feb 14th

Note, a Design Document is due when you submit Lab1 final circuit

Work alone

Homework1 is out

Due a week before prelim1, Monday, February 24th

Work on problems incrementally, as we cover them in lecture

Office Hours for help

Work alone

Work alone, BUT use your resources
• Lab Section, Piazza.com, Office Hours

• Class notes, book, Sections, CSUGLab

Check online syllabus/schedule

• http://www.cs.cornell.edu/Courses/CS3410/2014sp/schedule.html

Slides and Reading for lectures

Office Hours

Homework and Programming Assignments

Prelims (in evenings):
• Tuesday, March 4th

• Thursday, May 1th

Schedule is subject to change

“Black Board” Collaboration Policy
• Can discuss approach together on a “black board”
• Leave and write up solution independently
• Do not copy solutions

Late Policy
• Each person has a total of four “slip days”
• Max of two slip days for any individual assignment
• Slip days deducted first for any late assignment,
 cannot selectively apply slip days
• For projects, slip days are deducted from all partners
• 25% deducted per day late after slip days are exhausted

Regrade policy
• Submit written request to lead TA,
 and lead TA will pick a different grader
• Submit another written request,
 lead TA will regrade directly
• Submit yet another written request for professor to regrade.

State
• How do we store one bit?

• Attempts at storing (and changing) one bit
– Set-Reset Latch

– D Latch

– D Flip-Flops

– Master-Slave Flip-Flops

• Register: storing more than one bit, N-bits

Basic Building Blocks
• Decoders and Encoders

Finite State Machines (FSM)
• How do we design logic circuits with state?

• Types of FSMs: Mealy and Moore Machines

• Examples: Serial Adder and a Digital Door Lock

How do we design logic circuits with state?

An electronic machine which has

• external inputs

• externally visible outputs

• internal state

Output and next state depend on

• inputs

• current state

Machine is

 M = (S, I, O,)

S: Finite set of states

I: Finite set of inputs

O: Finite set of outputs

: State transition function

Next state depends on present input and
present state

Finite State Machine

• inputs from external world

• outputs to external world

• internal state

• combinational logic

Next State

Current
State

Input

Output

R
eg

is
te

rs

Comb.
Logic

Legend

state

input/output

start
state

A B

C D

down/on
up/off down/on

 down/off

up/off

up/off

down/off up/off

Input: up or down
Output: on or off
States: A, B, C, or D

Legend

state

input/output

start
state

A B

C D

down/on
up/off down/on

 down/off

up/off

up/off

down/off up/off

Input: = up or = down
Output: = on or = off
States: = A, = B, = C, or = D

Legend

S1S0

i0i1i2…/o0o1o2…

S1S0

00 01

10 11

1/1
0/0 1/1

1/0

0/0

1/0

0/0 0/0

Input: 0=up or 1=down
Output: 1=on or 0=off
States: 00=A, 01=B, 10=C, or 11=D

General Case: Mealy Machine

 Outputs and next state depend on both
current state and input

Next State

Current
State

Input

Output
R

eg
is

te
rs

Comb.
Logic

Special Case: Moore Machine

 Outputs depend only on current state

Next State

Current
State

Input

Output
R

eg
is

te
rs

 Comb.
Logic

Comb.
Logic

Legend

state
out

input

start
out

A
off

B
on

C
off

D
off

down
up down

down

up

up

down up

Input: up or down
Output: on or off
States: A, B, C, or D

Legend

state

input/output

start
state

A B

C D

down/on
up/off down/on

 down/off

up/off

up/off

down/off up/off

Input: up or down
Output: on or off
States: A, B, C, or D

Add two infinite input bit streams

• streams are sent with least-significant-bit (lsb) first

 …10110

…01111
…00101

Sum: output

Add two infinite input bit streams

• streams are sent with least-significant-bit (lsb) first

 …10110

…01111
…00101

Sum: output

Carry-out
 1

Add two infinite input bit streams

• streams are sent with least-significant-bit (lsb) first

 …10110

…01111
…00101

Sum: output

Carry-in
 1

Add two infinite input bit streams

• streams are sent with least-significant-bit (lsb) first

 …10110

…01111
…00101

Carry-out
 1 1

Sum: output

Add two infinite input bit streams

• streams are sent with least-significant-bit (lsb) first

• How many states are needed to represent FSM?

• Draw and Fill in FSM diagram

 …10110

…01111
…00101

Strategy:
(1) Draw a state diagram (e.g. Mealy Machine)
(2) Write output and next-state tables
(3) Encode states, inputs, and outputs as bits
(4) Determine logic equations for next state and outputs

Sum: output

Two states: S0 (no carry in), S1 (carry in)
Inputs: a and b
Output: z

• z is the sum of inputs a, b, and carry-in (one bit at a time)
• A carry-out is the next carry-in state.
• .

 …10110

…01111
…00101

a

b
z

Two states: S0 (no carry in), S1 (carry in)
Inputs: a and b
Output: z

• z is the sum of inputs a, b, and carry-in (one bit at a time)
• A carry-out is the next carry-in state.
• Arcs labeled with input bits a and b, and output z

S0 S1 __/_ __/_

__/_

__/_

__/_ __/_

__/_

__/_

 …10110

…01111
…00101

a

b
z

S0 S1 00/0 11/1

01/0

11/0

10/0 10/1

00/1

01/1

Two states: S0 (no carry in), S1 (carry in)
Inputs: a and b
Output: z

• z is the sum of inputs a, b, and carry-in (one bit at a time)
• A carry-out is the next carry-in state.
• Arcs labeled with input bits a and b, and output z (Mealy Machine)

 …10110

…01111
…00101

a

b
z

a b Current

state

 z Next

state

S0 S1 00/0 11/1

01/0

11/0

10/0 10/1

00/1

01/1

(2) Write down all input and
state combinations

(2) Write down all input and
state combinations

a b Current

state

 z Next

state

0 0 S0 0 S0

0 1 S0 1 S0

1 0 S0 1 S0

1 1 S0 0 S1

0 0 S1 1 S0

0 1 S1 0 S1

1 0 S1 0 S1

1 1 S1 1 S1

S0 S1 00/0 11/1

01/0

11/0

10/0 10/1

00/1

01/1

(3) Encode states, inputs, and
outputs as bits

Two states, so 1-bit is sufficient

• A single flip-flop will encode the
state

a b s z s'

0 0 0 0 0

0 1 0 1 0

1 0 0 1 0

1 1 0 0 1

0 0 1 1 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 1

0 1 00/0 11/1

01/0

11/0

10/0 10/1

00/1

01/1

(4) Determine logic equations
for next state and outputs

Combinational Logic Equations

z = a bs + abs + abs + abs
s’ = abs + a bs + ab s + abs

Next State

Current
State

Input

Output

Comb.
Logic a

b

D Q
s z s'

s'

Next
State

a b s z s'

0 0 0 0 0

0 1 0 1 0

1 0 0 1 0

1 1 0 0 1

0 0 1 1 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 1

Strategy:
(1) Draw a state diagram (e.g. Mealy Machine)
(2) Write output and next-state tables
(3) Encode states, inputs, and outputs as bits
(4) Determine logic equations for next state and outputs

Next State

Current
State

Input

Output

Comb.
Logic a

b

D Q
s z s'

s'

Next
State

z = a bs + abs + abs + abs

s’ = abs + a bs + ab s + abs

.

.

.

We can now build interesting devices with sensors

• Using combinational logic

We can also store data values

• Stateful circuit elements (D Flip Flops, Registers, …)

• Clock to synchronize state changes

• State Machines or Ad-Hoc Circuits

