Numbers and Arithmetic

Kavita Bala
CS 3410, Spring 2014
Computer Science
Cornell University

See: P&H Chapter 2.4, 3.2, B.2, B.5, B.6

Big Picture: Building a Processor

memory

register
file

—>

control

A\ Imm

cmp

»

I

]

A single cycle processor

>d, d

memory

out

Today’s Lecture

Binary Operations
Number representations
One-bit and four-bit adders
Negative numbers and two’s complement
Addition (two’s complement)
Subtraction (two’s complement)

Performance

Number Representations

Recall: binary
* Two symbols (base 2): true and false; 1 and O
 Basis of logic circuits and all digital computers

How to represent numbers in binary (base 2)?

Number Representations

How to represent numbers in binary (base 2)?
* Know how to represent numbers in decimal (base 10)

-Eg.637

10210% 10°

e Other bases
— Base 2 — Binary

— Base 8 — Octal Oo1175
83 82 g1 g0

— Base 16 — Hexadecimal Ox27d

162161169

Number Representations

Dec (base 10) Bin (base 2) Oct (base 8) Hex (base 16)

0
1
10
11

0]
1
P
3
4
5
6
7
8

e e g O N
N oo bW NEE OO

S

R O s ® Q 0T v OO NOOTULVLSELEWNERO

[EY
. 00
[EEY
N

O
O .

Number Representations

Dec (base 10) Bin (base 2) Oct (base 8) Hex (base 16)

0
1
10
11

Ob 11111111 =
Ob 1 0000 0000 =

Oo 77 =
e IVE

0]
1
P
3
4
5
6
7
8

Ox ff =
Ox 100 =

DT Q0 T LNV S WNERO

AN

Number Representations

Dec (base 10) Bin (base 2) Oct (base 8) Hex (base 16)

0
1
10
11

Ob 11111111 =255
Ob 1 0000 0000 = 256

Oo 77 =63
0o 100 = 64

0]
1
P
3
4
5
6
7
8

Ox ff = 255
Ox 100 = 256

D QAnm"n TV LOOONOOTULDD,WNERO

Number Representations

How to convert a number between different bases?

Base conversion via repetitive division
Divide by base, write remainder, move left with quotient

remainder
+8=9 remainder
+8=1 remainder
+8=0 remainder

637+8=79
7

637 =00 1175

msb Isb

Isb (least significant bit)

msb (most significant bit)

Number Representations

Convert a base 10 number to a base 2 number
Base conversion via repetitive division

* Divide by base, write remainder, move left with quotient
* 637+2=318 remainder
318 +2=159 remainder
159 +2=79 remainder
79 +2=39 remainder
39+2=19 remainder
19 + 2 remainder
+ 2 remainder
+ 2 remainder
+ 2
+ 2

Isb (least significant bit)

remainder
. remainder msb (most significant bit)
637 =100111 1101 (can also be written as 0b10 0111 1101)

msb Isb

P OO P kP Rk Rk O+

Range of Values

n bits: O to 2"-1

E.g., 4 bits 0000 to 1111 is0to 15

Number Representations

Convert a base 2 number to base 8 (oct) or 16 (hex)
Binary to Hexadecimal
Convert each nibble (group of 4 bits) from binary to hex
A nibble (4 bits) ranges in value from 0...15, which is one hex digit
— Range: 0000...1111 (binary) => 0x0 ...OxF (hex) => 0...f

—E.g. 0b10 0111 1101

—0b10 = 0x2

— 0b0111 = 0x7

—0b1101 = Oxd

— Thus, 637 =0x27d =0b10 0111 1101

Similarly for base 2 to base 8

Takeaway

Digital computers are implemented via logic circuits and
thus represent all numbers in binary (base 2)

We (humans) often write numbers as decimal and
hexadecimal for convenience, so need to be able to
convert to binary and back (to understand what computer
is doing!)

Next

Binary Arithmetic: Add and Subtract two binary numbers

Binary Addition

How do we do arithmetic in binary?

1 Addition works the same way
183 regardless of base

+ 254 * Add the digits in each position

Carry-oﬁtPrOpagate the carry

Carrv.; 437
arry-in—-____~
111 . . .

001110 Unsigned binary addition is pretty easy
1
1

100 e Combine two bits at a time

+ 01
10

010 * Along with a carry

Binary Addition

Binary addition requires
* Add of two bits PLUS carry-in
* Also, carry-out if necessary

1-bit Adder

Half Adder
e Adds two 1-bit numbers

e Computes 1-bit result and
1-bit carry

* No carry-in

1-bit Half Adder

Cout:AB _ -
S=A®&B=AB+AB

AB

&

1-bit Half Adder

Cout:AB _ -
S=A®&B=AB+AB

AB

&

-

1-bit Adder with Carry
B

L

=

A\ 4

S
Full Adder

 Adds three 1-bit numbers

* Computes 1-bit result and 1-
bit carry

 Can be cascaded

= | = | O|0O|Rr || OO |>
_ O |, O |, O, | O |l
R lrRr|RPr|IRP|OlO|O|O|O

1-bit Adder with Carry
B

L

S

v

S

Full Adder

Adds three 1-bit numbers

Computes 1-bit result and
1-bit carry

Can be cascaded

= | = OO |k | = | O | O0O|>X
= O |k~ | O|=R | O|= | Ol
R PR |R, |k, OO0 | 0O|l0O
= (= | = | O | OO O]
= O | O, O, |k | Olwuv;

1-bit Adder with Carry
B

L

=

R (P, | O|0O(Rr | |[OC|O]I>
R | O|l—Rr | O(lRrR[O|lRr O
R |lP(P|PIOlOC|O|O]O
= (= | = | Ol Ol |10
= O | O |l [O|lFR|-—= |[O1lWu;,

S =ABCin+AB Cin+A BCin + ABCis
Cout =ABCin + ABCin + ABCin + ABC

B1-bit Adder with Carry

! S=ABCin+AB Cin+A BCin + ABCin
Cout — ABC[n +ABC“7 -7 /AABBC“’; +ABCU*)

— Cin

nN€E—

5

R |k |lo|lo|rRr|kr|lOo|Oo]D>
~r|lo|l,r|lOo|lrr|lOo|lr|O]lw
Rk |Rr|r|lo|lo|lo|o]ln
||, |OlRr|OCJ|OC|OC]16NO
—m|lolo|lr|o|lkr |~ |lo]lwn

. 1B-bit Adder with Carry
!

«— C.

Using Karnaugh maps

<

S=ABC;, +AB Cij, + A BC;, + ABC;,
Cout B AB + AC(n + BC(n

Wn

5

cout
00 01 1110

010 |1
0 &

R |k |lo|lo|rRr|kr|lOo|Oo]D>
~r|lo|l,r|lOo|lrr|lOo|lr|O]lw
Rk |Rr|r|lo|lo|lo|o]ln
||, |OlRr|OCJ|OC|OC]16NO
—m|lolo|lr|o|lkr |~ |lo]lwn

=
<
O
O
(©
.n
<
i
-
O
(O
-

4-bit Adder
Al4] B[4]

! 4-Bit Full Adder

 Adds two 4-bit numbers and
carry in

«—C._

Computes 4-bit result and carry
out

Can be cascaded

4-bit Adder

0 1
A, B, A By

S

! !

53 >, o1 S0
0 1 0 1

Adds two 4-bit numbers, along with carry-in
Computes 4-bit result and carry out

Carry-out = overflow indicates result does not
fitin 4 bits

Takeaway

Digital computers are implemented via logic circuits and
thus represent all numbers in binary (base 2)

We (humans) often write numbers as decimal and
hexadecimal for convenience, so need to be able to
convert to binary and back (to understand what computer

is doing!)

Adding two 1-bit numbers generalizes to adding two
numbers of any size since 1-bit full adders can be cascaded

Next Goal

How do we subtract two binary numbers?
Equivalent to adding with a negative number

How do we represent negative numbers?

First Attempt: Sign/Magnitude Representation

First Attempt: Sign/Magnitude Representation
* 1 bit for sign (O=positive, 1=negative)
* N-1 bits for magnitude 0111 =7/
Problem? 1111 =-7
* Two zero’s: +0 different than -0
* Complicated circuits

0000 =+0
1000 =-0
Others attempts

One’s complement
IBM 7090

Two’s Complement Representation

What is used: Two’s Complement Representation

To negate any number:

 complement all the bits (i.e. flip all the bits)
 thenadd 1

Nonnegative numbers are represented as usual
* 0=0000, 1=0001, 3=0011, 7=0111
To negate any number:
 complement all the bits (i.e. flip all the bits)
then add 1
-1: 1 =0001 = 1110= 1111
-3:3=0011=1100= 1101

-7:7=0111= 1000 = 1001
-0: 0 = 0000 = 1111 = 0000 (this is good, -0 = +0)

Two’s Complement Representation

One more example. How do we represent -207

20 = 0001 0100
20=1110 1011

+1
-20=1110 1100

Two’s Complement

Non-negatives
(as usual):

Negatives
(two’s complement: flip then add 1):

+0 = 0000
+1 =0001
+2 =0010
+3 =0011
+4 =0100
+5=0101
+6 =0110
+7=0111

f‘

—h —h —h —h —h —h —h —h

ip=1111
ip=1110
ip=1101
ip =1100
ip=1011
ip =1010
ip =1001
ip = 1000
ip=0111

-0 = 0000
-1=1111
-2=1110
-3=1101
-4 =1100
-5=1011
-6 = 1010
-/ =1001
-8 = 1000

Two’s Complement Facts

Signed two’s complement
* Negative numbers have leading 1’s
* zeroisunique: +0=-0

* wraps from largest positive to largest negative
N bits can be used to represent

* unsigned: range 0...2N-1
— eg: 8 bits = 0...255

* signed (two’s complement): -(2N1)...(2N1 - 1)
— ex: 8 bits = (1000 000) ... (0111 1111)
—-128...127

Sigh Extension & Truncation

Extending to larger size
* 1111 =-1
* 11111111 =-1
* 0111 =7
* 00000111 =7
Truncate to smaller size
* 00001111 =15
* BUT, 86601111 =1111=-1

Two’s Complement Addition

Addition with two’s complement signed numbers

Perform addition as usual, regardless of sign
(it just works)

Examples
¢ 1+-1=

* -3+-1-=
c -7+ 3=
* 7+(3)=

Two’s Complement Addition

Addition with two’s complement signed numbers

Perform addition as usual, regardless of sign
(it just works)

Examples
1+-1=0001+1111=0000 (0)
-3+-1=1101+1111=1100 (-4)
7+ 3=1001+ 0011 = 1100 (-4)
7+(-3) = 0111 + 1101 = 0100 (4)
What is wrong with the following additions?

¢ 7+1,-7+-3,-7+-1
» 1000 , 10110 , 1000 fine

Binary Subtraction

Why create a new circuit?

Just use addition using two’s complement math
* How?

Binary Subtraction

Two’s Complement Subtraction
* Subtraction is simply addition,
where one of the operands has been negated
— Negation is done by inverting all bits and adding one
A—B=A+(-B)=A+(F+ 1)

0B, o:R 1B,
L

D UL 4 of

Takeaway

Digital computers are implemented via logic circuits and thus
represent all numbers in binary (base 2).

We (humans) often write numbers as decimal and hexadecimal for
convenience, so need to be able to convert to binary and back (to
understand what computer is doing!).

Adding two 1-bit numbers generalizes to adding two numbers of any
size since 1-bit full adders can be cascaded.

Using Two’s complement number representation simplifies adder
Logic circuit design (0 is unique, easy to negate)

Subtraction is simply adding, where one operand is negated (two’s
complement; to negate just flip the bits and add 1)

Next Goal

In general, how do we detect and handle overflow?

Overflow

When can overflow occur?
* adding a negative and a positive?

* adding two positives?

* adding two negatives?

Overflow

When can overflow occur?
* adding a negative and a positive?
— Overflow cannot occur (Why?)
— Always subtract larger magnitude from smaller
* adding two positives?
— Overflow can occur (Why?)
— Precision: Add two positives, and get a negative number!
* adding two negatives?
— Overflow can occur (Why?)
— Precision: add two negatives, get a positive number!

Rule of thumb:

* Overflow happens iff
carry in to msb = carry out of msb

Overflow

When can overflow occur?

A

MBB
I |

over écout_MSB
flow ‘

\ 4
SMSB

Rule of thumb:

* Overflow happened iff
carry into msb = carry out of msb

iVEREE R

Two’s Complement Adder

Two’s Complement Adder with overflow detection

o

Two’s Complement Adder

Two’s Complement Subtraction with overflow
detection

o

Two’s Complement Adder

Two’s Complement Adder with overflow detection
B3 BZ Bl

v| v| v

3 A2 Al

A
1' 1' ! ! ! !

o

Takeaway

Digital computers are implemented via logic circuits and thus represent all
numbers in binary (base 2)

We (humans) often write numbers as decimal and hexadecimal for convenience, so
need to be able to convert to binary and back (to understand what computer is

doing!)

Adding two 1-bit numbers generalizes to adding two numbers of any size since 1-
bit full adders can be cascaded

Using two’s complement number representation simplifies adder Logic circuit
design (0 is unique, easy to negate). Subtraction is simply adding, where one
operand is negated (two’s complement; to negate just flip the bits and add 1)

Overflow if sign of operands A and B !=sign of result S. Can detect overflow by

testing C, !=C, of the most significant bit (msb), which only occurs when
previous statement is true

A Calculator

A Calculator

3
/

Efficiency and Generality

* Is this design fast enough?
e Can we generalize to 32 bits? 64? more?

Ao

Performance

Speed of a circuit is affected by the number of
gates in series (on the critical path or the
deepest level of logic)

combinatorial
Logic

>
t

outputs
expected

combinatorial

4-bit Ripple Carry Adder

«———

Carry ripples from Isb to msb

 First full adder, 2 gate delay
« Second full adder, 2 gate delay

Today’s Lecture

Binary Operations
Number representations
One-bit and four-bit adders
Negative numbers and two’s complement
Addition (two’s complement)
Subtraction (two’s complement)

Performance

Summary

We can now implement combinatorial logic circuits
* Design each block

— Binary encoded numbers for compactness

Decompose large circuit into manageable blocks
— 1-bit Half Adders, 1-bit Full Adders,

n-bit Adders via cascaded 1-bit Full Adders, ...
Can implement circuits using NAND or NOR gates

Can implement gates using use PMOS and NMOS-
transistors

Can add and subtract numbers (in two’s complement)!
Next time, state and finite state machines...

Administrivia

Check online syllabus/schedule

- Slides and Reading for lectures
« Office Hours
« Homework and Programming Assignments

Schedule is subject to change

