Numbers and Arithmetic

Kavita Bala
CS 3410, Spring 2014
Computer Science
Cornell University

See: P&H Chapter 2.4, 3.2, B.2, B.5, B.6

Big Picture: Building a Processor

addr

memory

A single cycle processor

Today’s Lecture

Binary Operations
Number representations
One-bit and four-bit adders
Negative numbers and two’s complement
Addition (two’s complement)
Subtraction (two’s complement)

Performance

Number Representations

Recall: binary
* Two symbols (base 2): true and false; 1 and 0
* Basis of logic circuits and all digital computers

How to represent numbers in binary (base 2)?

Number Representations

How to represent numbers in binary (base 2)?
* Know how to represent numbers in decimal (base 10)
£g637

10210* 10°

e Other bases
— Base 2 — Binary

— Base 8 — Octal 0Oo1175

83 82 81 80

— Base 16 — Hexadecimal
162161160

637 has a 1’s place , 10’s place and 100’s place
Show how to go from

512+64+32+16+8+4+1
512+64+56+5
2*256+7*%16+ 13 =512+112+13

Number Representations
Dec (base 10) Bin (base 2) Oct (base 8) Hex (base 16)

0
1
10
11

0
1
2
3
4
5
6
7
8

DN T OLOURNIOTUVNADWNERO

R e
NP Ol

The base represents the number of unigque symbols (decimal has 10, octal has 8,
hexadecimal has 16, and binary has 2 unique symbols)
Every group of four bits is called a nibble, every group of 8 bits is a byte

Number Representations
Dec (base 10) Bin (base 2) Oct (base 8) Hex (base 16)

0
1
10
11 Ob 11111111 =

Ob 1 0000 0000 =

0077 =
0o 100 =

Ox ff =
0Ox 100 =

0
1
2
3
4
5
6
7
8

DN T OLOURNIOTUVNADWNERO

R e
NP Ol

The base represents the number of unigque symbols (decimal has 10, octal has 8,
hexadecimal has 16, and binary has 2 unique symbols)
Every group of four bits is called a nibble, every group of 8 bits is a byte

Number Representations
Dec (base 10) Bin (base 2) Oct (base 8) Hex (base 16)

0
1
10

11 Ob 11111111 =255

Ob 1 0000 0000 = 256

0o 77 =63
0o 100 =64

DUV hA WNEL O

0
1
2
3
4
5
6
7
8

e
N = O

Ox ff = 255
Ox 100 = 256

NNNR R R R R
NROlNoOWnbdWw ~

Tl

NR Ol DT O OONODNDWNRO

The base represents the number of unigque symbols (decimal has 10, octal has 8,
hexadecimal has 16, and binary has 2 unique symbols)
Every group of four bits is called a nibble, every group of 8 bits is a byte

Convert to a different base instead of same base

637 = 001175 =0b1001111101 = 0x27D
oct:637:79:9:1:0

bin: 637:318:159:79:39:19:9:4:2:1:0
hex:637:39:2:0

Ask students to write down binary number after we figure it out. The question is did they writ the
637 =001175=0b100111 1101 =0x27D
oct:637:79:9:1:0
bin:637:318:159:79:39:19:9:4:2:1:0
hex:637:39:2:0

Range of Values

n bits: 0 to 2"-1

E.g., 4 bits 0000 to 1111 is 0 to 15

2A3 + 272 4271 +1=274-1
2N = 2N3 + 2M2 + 2A1 + 2/ =273 + 272 + 2 times 2

11

Ask class to convert from binary to octal

637 =001175 =0b100111 1101 = 0x27D
oct:637:79:9:1:0
bin:637:318:159:79:39:19:9:4:2:1:0
hex:637:39:2:0

Takeaway

Digital computers are implemented via logic circuits and
thus represent all numbers in binary (base 2)

We (humans) often write numbers as decimal and
hexadecimal for convenience, so need to be able to
convert to binary and back (to understand what computer
is doing!)

We can write any number in any base we like. The most natural base for computers is
binary, which is hard to read, which is the reason we use hex and octal.

13

Next

Binary Arithmetic: Add and Subtract two binary numbers

14

Binary Addition

How do we do arithmetic in binary?

1 Addition works the same way
183 regardless of base
+ 254 * Add the digits in each position

. .Propagate the carry
Carry—in43‘7 Carry-out

111
001110 Unsigned binary addition is pretty easy

+ 011100 * Combine two bits at a time
* Along with a carry

Talk about Cin (carry in) and Cout (carry out)
So we need two numbers, the sum, carry in, and carry out

Binary Addition

Binary addition requires
* Add of two bits PLUS carry-in
* Also, carry-out if necessary

Talk about Cin (carry in) and Cout (carry out)
So we need two numbers, the sum, carry in, and carry out

1-bit Adder

Half Adder
e Adds two 1-bit numbers

* Computes 1-bit result and
1-bit carry

* No carry-in

Adds two 1-bit numbers,
computes 1-bit result and carry out
Useful for the rightmost binary digit, not much else

1-bit Half Adder

Cout:AB - -
S=Ae®B=AB+AB

AB

Adds two 1-bit numbers,
computes 1-bit result and carry out
Useful for the rightmost binary digit, not much else

1-bit Half Adder

Cout:AB - -
S=Ae®B=AB+AB

AB

Adds two 1-bit numbers,
computes 1-bit result and carry out
Useful for the rightmost binary digit, not much else

1-bit Adder with Carry
A B

Full Adder

e Adds three 1-bit numbers

* Computes 1-bit result and 1-
bit carry

* (Can be cascaded

1-bit Adder with Carry

Full Adder
e Adds three 1-bit numbers

* Computes 1-bit result and
1-bit carry

* Can be cascaded

1-bit Adder with Carry
A B

S=ABCin+AB Cin+A BCin+ABCi
Cout - ABCU‘) +ABC“7 +ABC(n +ABCU‘;

B1-bit Adder with Carry

S =ABCin +AB Cin+A BCin+ ABCin
Cout — ABC(n +ABC”7 + lé,\ABBCln +ABCU7

A

E

1B-bit Adder with Carry

Using Karnaugh maps

S= ZBC_m+A§ C_,n+Z BCin + ABCin

cout
in_00 01 1110

Can’t do much with S. But can optimize Cout.

LabO 1-bit adder

How do we get to our circuit from Lab. Using the ! notation to represent NOT here.

S=IABIC+AIBIC+!AIBC+ABC=!A(B!IC+!BC)+A(!IB!C+BC)=!A(BxorC)+A!
(B xor C) = A xor (B xor C)

BxorC=IBC+B!C

I (BxorC)=!(IBC)!(B!IC)=(B+!C)(IB +C)=1!B!IC+BC

C out=AB!C+C(AxorB)+CAB=AB+C(AxorB)

25

4-bit Adder

4-Bit Full Adder

Adds two 4-bit numbers and
carry in

A[4] B[4]

Computes 4-bit result and carry
out

Can be cascaded

Adds two 1-bit numbers, along with carry-in, computes 1-bit result and carry out
Can be cascaded to add N-bit numbers

4-bit Adder

0 1 1
A, B, A, B,

SZ sl
0 1 0 1

Adds two 4-bit numbers, along with carry-in
Computes 4-bit result and carry out

Carry-out = overflow indicates result does not
fitin 4 bits

Transition: to do subtraction, just add, but negate one number

Takeaway

Digital computers are implemented via logic circuits and
thus represent all numbers in binary (base 2)

We (humans) often write numbers as decimal and
hexadecimal for convenience, so need to be able to
convert to binary and back (to understand what computer
is doing!)

Adding two 1-bit numbers generalizes to adding two
numbers of any size since 1-bit full adders can be cascaded

28

Next Goal

How do we subtract two binary numbers?
Equivalent to adding with a negative number

How do we represent negative numbers?

29

First Attempt: Sign/Magnitude Representation

First Attempt: Sign/Magnitude Representation
* 1 bit for sign (O=positive, 1=negative)
* N-1 bits for magnitude 0111 =7
Problem? 1111 =-7
* Two zero’s: +0 different than -0
* Complicated circuits

0000=+0
1000=-0
Others attempts

One’s complement
IBM 7090

problems? two zeros, circuit still complicated
e.g. the existence of two forms of the same value (-0 and +0) necessitates two rather
than a single comparison when checking for equality with zero.

The CDC 6000 series and UNIVAC 1100 series computers were based on ones'
complement.

Also, in addition to two zero’s, there is a crazy phenomenon called "end-around
carry”: If the carry extends past the end of the word it is said to have "wrapped"
around, a condition called an "end-around carry". When this occurs, the bit must be
added back in at the right-most bit. This phenomenon does not occur in two's
complement arithmetic.

Subtraction is similar, except that borrows are propagated to the left instead of
carries. If the borrow extends past the end of the word it is said to have "wrapped"
around, a condition called an "end-around borrow". When this occurs, the bit must
be subtracted back in at the right-most bit. This phenomenon does not occur in two's
complement arithmetic.

The CDC 6000 series and UNIVAC 1100 series computers were based on ones'
complement.

30

Two’s Complement Representation

What is used: Two’s Complement Representation

To negate any number:
* complement all the bits (i.e. flip all the bits)
* thenadd 1
Nonnegative numbers are represented as usual
« 0=0000, 1=0001, 3=0011, 7=0111
To negate any number:
complement all the bits (i.e. flip all the bits)
then add 1
-1:1=0001=1110=1111
-3:3=0011=1100= 1101
-7:7=0111= 1000 = 1001
-0: 0= 0000 => 1111 = 0000 (this is good, -0 = +0)

add 1 and *discard carry*

Add a “Did you know box”

The two's complement of an N-bit number is defined as the *complement* with
respect to 2”N, in other words the result of subtracting the number from 2AN. This is
also equivalent to taking the *ones' complement* and then adding one, since the
sum of a number and its ones' complement is all 1 bits. The two's complement of a
number behaves like the negative of the original number in most arithmetic, and
positive and negative numbers can coexist in a natural way.

Two's complement is the easiest to implement in hardware, which may be the
ultimate reason for its widespread popularity[citation needed]. Remember that
processors on the early mainframes often consisted of thousands of transistors —
eliminating a significant number of transistors was a significant cost savings. The
architects of the early integrated circuit based CPUs (Intel 8080, etc.) chose to use
two's complement math. As IC technology advanced, virtually all adopted two's
complement technology. Intel, AMD, and IBM POWER chips are all two's
complement.[

31

Two’s Complement Representation

One more example. How do we represent -207?

20 = 0001 0100
20=1110 1011
+1

-20=1110 1100

Add and subtract the same number to show that two’s complement works

32

Two’s Complement

Non-negatives
(as usual):

Negatives
(two’s complement: flip then add 1):

choose -8 so we have a sign bit

+0=-0

+0 = 0000
+1 = 0001
+2 = 0010

+3=0011
+4 = 0100
+5=0101
+6 =0110
+7 =0111

wraps from +7 to -8
asymmetric: no +8

Range of values with n bits goes from unsigned: 0 to 2*n—1
For signed: 2”(n-1)-1 to -2”n

flip = 1111
flip = 1110
flip = 1101
flip = 1100
flip = 1011
flip = 1010
flip = 1001
flip = 1000
flip = 0111

-0 =0000
-1=1111
-2=1110
-3=1101
-4 =1100
-5=1011
-6 =1010
-7 =1001
-8 =1000

Two’s Complement Facts

Signed two’s complement
* Negative numbers have leading 1’s
* zeroisunique: +0=-0

* wraps from largest positive to largest negative
N bits can be used to represent

* unsigned: range 0...2N-1
—eg: 8 bits = 0...255

* signed (two’s complement): -(2N1)...(2N-1- 1)
— ex: 8 bits = (1000 000) ... (0111 1111)
--128..127

Why two’s complement works:

Given a set of all possible N-bit values, we can assign the lower (by binary value) half
to be the integers from 0 to (2*[N-1]-1) inclusive and the upper half to be -2A[N-1]
to -1 inclusive. The upper half can be used to represent negative integers from -2A[N
-1] to -1 because, under addition modulo 2N they behave the same way as those
negative integers. That is to say that because i + j mod 2AN =i + (j + 2AN) mod 2~N
any value in the set {j + k2AN | k is an integer} can be used in place of j.

For example, with eight bits, the unsigned bytes are 0 to 255. Subtracting 256 from
the top half (128 to 255) yields the signed bytes -128 to -1.

The relationship to two's complement is realized by noting that 256 = 255 + 1, and
(255 - x) is the ones' complement of x.

http://en.wikipedia.org/wiki/Two%27s_complement

Sign Extension & Truncation

Extending to larger size
* 1111 =-1
* 11111111 =-1
* 0111=7
* 00000111 =7

Truncate to smaller size
* 0000 1111 =15
* BUT, 86001111 =1111=-1

Two’s Complement Addition

Addition with two’s complement signed numbers

Perform addition as usual, regardless of sign
(it just works)

Examples
c 1+-1=

c-3+-1=
* -7+ 3=
© 7+(3)=

1+-1=0001 + 1111 = 0000 (0)

3+-1=1101+1111=1100 (-4)
-7+ 3=1001 + 0011 = 1100 (-4)
7 +(-3) = 0111 + 1101 = 0100 (4)

7 +1=0111+0001 = 1000 = -8 (OVERFLOW)! (Had a carry in to the MSB!) Sign of
out !=sign of in

7+(-3) 0111+1101= 1100=-4

-7+-3=1001 + 1101 = 0110 (cout = 1) (Did not have a carry in to the MSB)
-7+-1=1001 + 1111 = 1000 (cout =1)

Two’s Complement Addition

Addition with two’s complement signed numbers

Perform addition as usual, regardless of sign
(it just works)

Examples
1+-1=0001+1111=0000 (0)

-3+-1=1101+1111=1100 (-4)

-7+ 3=1001 + 0011 =1100 (-4)

7+(-3)=0111 + 1101 = 0100 (4)

What is wrong with the following additions?
e 7+1,-7+-3,-7+-1
* 1000 , 10110 , 1000 fine

1+(-1)

(-3) +(-1) =1101 + 1111 = 1100 = (-4)
(-7) +3=1001 + 0011 = 1100 (-4)

7 +(-3) = 0111 + 1101 = 0100 (4)

7 + 1 : overflow
(-7) + (-3) : overflow
(-7) +(-1)

7 +1=0111+0001 = 1000 = -8 (OVERFLOW)! (Had a carry in to the MSB!) Sign of
out !=sign of in

-7+-3=1001 +1101 = 0110 (cout = 1) (Did not have a carry in to the MSB)
-7+-1=1001+1111= 1000 (cout=1)

Binary Subtraction

Why create a new circuit?

Just use addition using two’s complement math
* How?

a—Db, where b is so large that —B overflows

B must be -8, so that —B = -8

last bit will change

if a >= 0, will correctly signal overflow

if a <0, will correctly subtract and not signal overflow

Binary Subtraction

Two’s Complement Subtraction
* Subtraction is simply addition,
where one of the operands has been negated
— Negation is done by inverting all bits and adding one
A-B=A+(-B)=A+(B+1)
0B,

a—Db, where b is so large that —B overflows

B must be -8, so that —B = 8

last bit will change

if a >= 0, will correctly signal overflow

if a < 0, will correctly subtract and not signal overflow

Takeaway

Digital computers are implemented via logic circuits and thus
represent all numbers in binary (base 2).

We (humans) often write numbers as decimal and hexadecimal for
convenience, so need to be able to convert to binary and back (to
understand what computer is doing!).

Adding two 1-bit numbers generalizes to adding two numbers of any
size since 1-bit full adders can be cascaded.

Using Two’s complement number representation simplifies adder
Logic circuit design (0 is unique, easy to negate)

Subtraction is simply adding, where one operand is negated (two’s
complement; to negate just flip the bits and add 1)

40

Next Goal

In general, how do we detect and handle overflow?

41

Overflow

When can overflow occur?
* adding a negative and a positive?

* adding two positives?

* adding two negatives?

Overflow

When can overflow occur?
* adding a negative and a positive?
— Overflow cannot occur (Why?)
— Always subtract larger magnitude from smaller
* adding two positives?
— Overflow can occur (Why?)
— Precision: Add two positives, and get a negative number!
* adding two negatives?
— Overflow can occur (Why?)
— Precision: add two negatives, get a positive number!

Rule of thumb:

* Overflow happens iff
carry in to msb != carry out of msb

*7+1,-7+-3
*1000 overflow, 1 0110 overflow,
‘0111

0111

0001

1000

cin=1,cout=0

1001
1101
10110
c_in=0,c_out=1
Overflow occurs because there are not enough bits to represent the precision/
magnitude of the result of the add

MSB
0
0
Cout=0 0 Cin=0
0
0

Cout=0 1 Cin=1 (Overflow!)

Overflow

When can overflow occur?

SMSB

Rule of thumb:

* Overflow happened iff
carry into msb != carry out of msb

Outgoing sign of result (S) does match in coming sign of operands, A and B. This only
happens when Cin != Cout
MSB!!

0
0
Cout=0 0 Cin=0
0
0
1

Cout=0 Cin =1 (Overflow!)

1
1
Cout=1 0 Cin=0 (Overflow!)
1
1
1

Cout=1 Cin=1

Two’s Complement Adder

Two’s Complement Adder with overflow detection

o
flow

Two’s Complement Adder

Two’s Complement Subtraction with overflow
detection

Two’s Complement Adder

Two’s Complement Adder with overflow detection

Takeaway

Digital computers are implemented via logic circuits and thus represent all
numbers in binary (base 2)

We (humans) often write numbers as decimal and hexadecimal for convenience, so
need to be able to convert to binary and back (to understand what computer is
doing!)

Adding two 1-bit numbers generalizes to adding two numbers of any size since 1-
bit full adders can be cascaded

Using two’s complement number representation simplifies adder Logic circuit
design (0 is unique, easy to negate). Subtraction is simply adding, where one
operand is negated (two’s complement; to negate just flip the bits and add 1)

Overflow if sign of operands A and B !=sign of result S. Can detect overflow by
testing C,, = C,,, of the most significant bit (msb), which only occurs when
previous statement is true

48

A Calculator

User enters the numbers to be added or subtracted using toggle switches
User selects ADD or SUBTRACT
Muxes feed A and B,

or A and -B, to the 8-bit adder
The 8-bit decoder for the hex display is straightforward (but not shown in detail)

A Calculator

red herring? constants into mux

Efficiency and Generality

* |s this design fast enough?

* Can we generalize to 32 bits? 64? more?

Performance

Speed of a circuit is affected by the number of
gates in series (on the critical path or the
deepest level of logic)

combinatorial
Logic

>
t

©
29
(@]
29
S 2
o':I)

combinatorial

4-bit Ripple Carry Adder

A, B,

Carry ripples from Isb to msb

« First full adder, 2 gate delay
« Second full adder, 2 gate delay

Today’s Lecture

Binary Operations
Number representations
One-bit and four-bit adders
Negative numbers and two’s complement
Addition (two’s complement)
Subtraction (two’s complement)

Performance

54

Administrivia

Check online syllabus/schedule
://www.cs.cornell.edu

+ Slides and Reading for lectures

+ Office Hours

+ Homework and Programming Assignments

Schedule is subject to change

schedule.html

56

