

Gates and Logic:

From switches to Transistors, Logic Gates and Logic Circuits

Prof. Kavita Bala and Prof. Hakim Weatherspoon

CS 3410, Spring 2014
Computer Science
Cornell University

Goals for Today

From Switches to Logic Gates to Logic Circuits
Logic Gates

- From switches
- Truth Tables

Logic Circuits

- Identity Laws
- From Truth Tables to Circuits (Sum of Products)

Logic Circuit Minimization

- Algebraic Manipulations
- Truth Tables (Karnaugh Maps)

Transistors (electronic switch)

A switch

- Acts as a conductor or insulator
- Can be used to build amazing things...

The Bombe used to break the German Enigma machine during World War II

Basic Building Blocks: Switches to Logic Gates

Either (OR)
Truth Table

A	B	Light
OFF	OFF	
OFF	ON	
ON	OFF	
ON	ON	

Both (AND)

A	B	Light
OFF	OFF	
OFF	ON	
ON	OFF	
ON	ON	

Basic Building Blocks: Switches to Logic Gates

Either (OR)

Truth Table

A	B	Light
OFF	OFF	
OFF	ON	
ON	OFF	
ON	ON	

Both (AND)

A	B	Light
OFF	OFF	
OFF	ON	
ON	OFF	
ON	ON	

Basic Building Blocks: Switches to Logic Gates

Either (OR)
Truth Table

A	B	Light
0	0	
0	1	
1	0	
1	1	

$0=O F F$
$1=O N$

Both (AND)

A	B	Light
0	0	
0	1	
1	0	
1	1	

Basic Building Blocks: Switches to Logic Gates

George Boole,(1815-1864)

Did you know?
George Boole Inventor of the idea of logic gates. He was born in
Lincoln, England and he was the son of a shoemaker in a low class family.

Takeaway

Binary (two symbols: true and false) is the basis of Logic Design

Building Functions: Logic Gates

Logic Gates

- digital circuit that either allows a signal to pass through it or not.
- Used to build logic functions
- There are seven basic logic gates:

AND, OR, NOT,
NAND (not AND), NOR (not OR), XOR, and XNOR (not XOR) [later]

Building Functions: Logic Gates

Logic Gates

- digital circuit that either allows a signal to pass through it or not.
- Used to build logic functions
- There are seven basic logic gates:

AND, OR, NOT,
NAND (not AND), NOR (not OR), XOR, and XNOR (not XOR) [later]

Building Functions: Logic Gates

NOT:

OR:

NAND:

A	B	Out
0	0	1
0	1	1
1	0	1
1	1	0

NOR:

A	B	Out
0	0	1
0	1	0
1	0	0
1	1	0

Logic Gates

- digital circuit that either allows a signal to pass through it or not.
- Used to build logic functions
- There are seven basic logic gates:

AND, OR, NOT,
NAND (not AND), NOR (not OR), XOR, and XNOR (not XOR) [later]

Goals for Today

From Switches to Logic Gates to Logic Circuits
Logic Gates

- From switches
- Truth Tables

Logic Circuits

- Identity Laws
- From Truth Tables to Circuits (Sum of Products)

Logic Circuit Minimization

- Algebraic Manipulations
- Truth Tables (Karnaugh Maps)

Transistors (electronic switch)

Next Goal

Given a Logic function, create a Logic Circuit that implements the Logic Function...
...and, with the minimum number of logic gates

Fewer gates: A cheaper (\$\$\$) circuit!

Logic Gates

NOT:

AND:

OR:

Logic Gates

NOT:

AND:

OR:

A	B	Out
0	0	0
0	1	1
1	0	1
1	1	1

NAND:

NOR:

XNOR:

A	B	Out
0	0	1
0	1	0
1	0	0
1	1	0

A	B	Out
0	0	1
0	1	0
1	0	0
1	1	1

Logic Equations

NOT:

- out $=\bar{a}=$ la $=\neg$ a

AND:

- out $=a \cdot b=a \& b=a \wedge b$

OR:

- out $=a+b=a \mid b=a \vee b$

XOR:

- out $=a \oplus b=a \bar{b}+\bar{a} b$

Logic Equations

- Constants: true = 1, false = 0
- Variables: a, b, out, ...
- Operators (above): AND, OR, NOT, etc.

Logic Equations

- Constants: true $=1$, false $=0$
- Variables: a, b, out, ...
- Operators (above): AND, OR, NOT, etc.

Identities useful for manipulating logic equations

- For optimization \& ease of implementation

$$
\begin{aligned}
& a+0= \\
& a+1= \\
& a+\bar{a}=
\end{aligned}
$$

a $\cdot 0=$
a. $1=$
a \cdot ā $=$

Identities useful for manipulating logic equations

- For optimization \& ease of implementation

$$
\begin{aligned}
& \overline{(a+b)}= \\
& \overline{(a \cdot b)}= \\
& a+a b= \\
& a(b+c)=
\end{aligned}
$$

$$
\overline{a(b+c)}=
$$

Logic Manipulation

- functions: gates \leftrightarrow truth tables \leftrightarrow equations
- Example: $(a+b)(a+c)=a+b c$

a	b	c					
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

Takeaway

Binary (two symbols: true and false) is the basis of Logic Design

More than one Logic Circuit can implement same Logic function. Use Algebra (Identities) or Truth Tables to show equivalence.

Goals for Today

From Switches to Logic Gates to Logic Circuits
Logic Gates

- From switches
- Truth Tables

Logic Circuits

- Identity Laws
- From Truth Tables to Circuits (Sum of Products)

Logic Circuit Minimization

- Algebraic Manipulations
- Truth Tables (Karnaugh Maps)

Transistors (electronic switch)

Next Goal

How to standardize minimizing logic circuits?

Logic Minimization

How to implement a desired logic function?

a	b	c	out
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	0
$\mathbf{0}$	$\mathbf{0}$	1	1
$\mathbf{0}$	1	0	0
$\mathbf{0}$	1	1	1
$\mathbf{1}$	$\mathbf{0}$	0	0
$\mathbf{1}$	$\mathbf{0}$	1	1
$\mathbf{1}$	1	0	0
$\mathbf{1}$	1	1	0

Logic Minimization

How to implement a desired logic function?

a	b	c	out	minterm
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\overline{\mathrm{a}} \overline{\mathrm{b}} \mathrm{c}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\overline{\mathrm{a}} \mathrm{b} \overline{\mathrm{c}}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\overline{\mathrm{a}} \mathrm{b} \mathrm{c}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathrm{a} \overline{\mathrm{b}} \overline{\mathrm{c}}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathrm{a} \overline{\mathrm{b}} \mathrm{c}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathrm{ab} \overline{\mathrm{c}}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	ab c

1) Write minterms
2) sum of products:

- OR of all minterms where out=1

Logic Minimization

How to implement a desired logic function?

a	b	c	out	minterm
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\overline{\mathrm{a}} \overline{\mathrm{b}} \mathrm{c}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\overline{\mathrm{a}} \mathrm{b} \overline{\mathrm{c}}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\overline{\mathrm{a}} \mathrm{b} \mathrm{c}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathrm{a} \overline{\mathrm{b}} \overline{\mathrm{c}}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathrm{a} \overline{\mathrm{b}} \mathrm{c}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathrm{ab} \overline{\mathrm{c}}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	ab c

1) Write minterms
2) sum of products:

- OR of all minterms where out=1

Karnaugh Maps

How does one find the most efficient equation?

- Manipulate algebraically until...?
- Use Karnaugh maps (optimize visually)
- Use a software optimizer

For large circuits
-Decomposition \& reuse of building blocks

Minimization with Karnaugh maps (1)

\checkmark Sum of minterms yields

a	b	c	out
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

- out =

Minimization with Karnaugh maps (2)

Sum of minterms yields

- out =

Karnaugh maps identify which inputs are (ir)relevant to the output

Minimization with Karnaugh maps (2)

Sum of minterms yields

- out $=\overline{\mathrm{ab}} \mathrm{c}+\overline{\mathrm{a}} \mathrm{bc}+\mathrm{a} \overline{\mathrm{b}}+\mathrm{a} \overline{\mathrm{b}} \mathrm{c}$

Karnaugh map minimization

- Cover all 1's
- Group adjacent blocks of 2^{n} 1's that yield a rectangular shape
- Encode the common features of the rectangle
- out $=\mathrm{a} \overline{\mathrm{b}}+\mathrm{a} \mathrm{c}$

Karnaugh Minimization Tricks (1)

Minterms can overlap

- out =

Minterms can span 2, 4, 8 or more cells

- out =

Karnaugh Minimization Tricks (2)

cd	00	01	11	10
00	0	0	0	0
01	1	0	0	1
11	1	0	0	1
10	0	0	0	0

The map wraps around

- out =

- out =

Karnaugh Minimization Tricks (3)

ab				
cd	00	01	11	10
00	0	0	0	0
01	1	X	X	X
11	1	X	X	1
10	0	0	0	0

ab				
cd	00	01	11	10
00	1	0	0	X
01	0	X	X	0
11	0	X	X	0
10	1	0	0	1

"Don't care" values can be interpreted individually in whatever way is convenient

- assume all x's = 1
- out =
- assume middle x's = 0
- assume $4^{\text {th }}$ column $x=1$
- out =

Multiplexer

A multiplexer selects between multiple inputs

- out = a, if d=0
- out = b, if d=1

a	b	d	out
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Build truth table
Minimize diagram
Derive logic diagram

Takeaway

Binary (two symbols: true and false) is the basis of Logic Design

More than one Logic Circuit can implement same Logic function. Use Algebra (Identities) or Truth Tables to show equivalence.

Any logic function can be implemented as "sum of products". Karnaugh Maps minimize number of gates.

Goals for Today

From Transistors to Gates to Logic Circuits

Logic Gates

- From transistors
- Truth Tables

Logic Circuits

- Identity Laws
- From Truth Tables to Circuits (Sum of Products)

Logic Circuit Minimization

- Algebraic Manipulations
- Truth Tables (Karnaugh Maps)

Transistors (electronic switch)

Activity\#4 How do we build electronic

Transistors:

 switches?- 6:10 minutes (watch from from 41s to 7:00)
- http://www.youtube.com/watch?v=Q05FgM7MLGg
- Fill our Transistor Worksheet with info from Video

NMOS and PMOS Transistors

- NMOS Transistor

- Connect source to drain when gate = 1
- N-channel

Connect source to drain when gate $=0$
P-channel

NMOS and PMOS Transistors

- NMOS Transistor

- Connect source to drain when gate = 1
- N-channel

Connect source to drain when gate $=0$
P-channel

Inverter

- Function: NOT
- Called an inverter
- Symbol:

Truth table

- Useful for taking the inverse of an input
- CMOS: complementary-symmetry metal-oxidesemiconductor

NAND Gate

- Function: NAND
- Symbol:

NOR Gate

- Function: NOR
- Symbol:

Building Functions (Revisited)

NOT:

AND:

OR:

NAND and NOR are universal

- Can implement any function with NAND or just NOR gates
- useful for manufacturing

Building Functions (Revisited)

NOT:

AND:

OR:

NAND and NOR are universal

- Can implement any function with NAND or just NOR gates
- useful for manufacturing

Logic Gates

One can buy gates separately

- ex. 74xxx series of integrated circuits
- cost ~\$1 per chip, mostly for packaging and testing

Cumbersome, but possible to build devices using gates put together manually

Then and Now

The first transistor

- on a workbench at

AT\&T Bell Labs in 1947

- Bardeen, Brattain, and Shockley

Big Picture: Abstraction

Hide complexity through simple abstractions

- Simplicity
- Box diagram represents inputs and outputs
- Complexity
- Hides underlying NMOS- and PMOS-transistors and atomic interactions

Summary

Most modern devices are made from billions of on /off switches called transistors

- We will build a processor in this course!
- Transistors made from semiconductor materials:
- MOSFET - Metal Oxide Semiconductor Field Effect Transistor
- NMOS, PMOS - Negative MOS and Positive MOS
- CMOS - complementary MOS made from PMOS and NMOS transistors
- Transistors used to make logic gates and logic circuits

We can now implement any logic circuit

- Can do it efficiently, using Karnaugh maps to find the minimal terms required
- Can use either NAND or NOR gates to implement the logic circuit
- Can use P- and N-transistors to implement NAND or NOR gates

