
Prof. Kavita Bala and Prof. Hakim Weatherspoon

CS 3410, Spring 2014

Computer Science

Cornell University

See: P&H Appendix B.2 and B.3 (Also, see B.1)

From Switches to Logic Gates to Logic Circuits

Understanding the foundations of

 Computer Systems Organization and Programming

From Switches to Logic Gates to Logic Circuits

Understanding the foundations of

 Computer Systems Organization and Programming

 e.g. Galaxy Note 3

From Switches to Logic Gates to Logic Circuits

Understanding the foundations of

 Computer Systems Organization and Programming

 e.g. Galaxy Note 3

 with the big.LITTLE 8-core ARM processor

From Switches to Logic Gates to Logic Circuits

Understanding the foundations of

 Computer Systems Organization and Programming

 e.g. Galaxy Note 3

 with the big.LITTLE 8-core ARM processor
big Quad Core LITTLE Quad Core

Architecture ARM v7a ARM v7a

Process Samsung 28nm Samsung 28nm

Frequency 200MHz~1.8GHz+ 200MHz~1.2GHz

Area 19mm2 3.8mm2

Power-ratio 1 0.17

L1 Cache Size 32 KB I/D Cache 32 KB I/D Cache

L2 Cache Size 2 MB Data Cache 512 KB Data Cache

From Switches to Logic Gates to Logic Circuits

Logic Gates

• From switches

• Truth Tables

Logic Circuits

• Identity Laws

• From Truth Tables to Circuits (Sum of Products)

Logic Circuit Minimization

• Algebraic Manipulations

• Truth Tables (Karnaugh Maps)

Transistors (electronic switch)

• Acts as a conductor or
insulator

• Can be used to build
amazing things…

The Bombe used to break the German
Enigma machine during World War II

A B Light

OFF OFF

A B Light

OFF OFF

OFF ON

A B Light

OFF OFF

OFF ON

ON OFF

ON ON

A B Light

+

-

A

B

A B Light

OFF OFF

OFF ON

ON OFF

Truth Table

A B Light

OFF OFF

A B Light

OFF OFF

OFF ON

A B Light

OFF OFF

OFF ON

ON OFF

A B Light

OFF OFF

OFF ON

ON OFF

ON ON

A B Light

OFF OFF

A B Light

OFF OFF

OFF ON

A B Light

OFF OFF

OFF ON

ON OFF

ON ON

A B Light

A B Light

+

-

-

A

B

A

B

A B Light

OFF OFF OFF

OFF ON ON

ON OFF ON

ON

Truth Table

+

Either (OR)

Both (AND)

+

-

-

A B Light

OFF OFF OFF

OFF ON ON

ON OFF ON

ON ON ON

A

B

A

B

A B Light

OFF OFF OFF

OFF ON OFF

ON OFF OFF

ON ON ON

Truth Table

+

Either (OR)

Both (AND)

-

-

A

B

A

B

A B Light

OFF OFF OFF

OFF ON ON

ON OFF ON

ON ON ON

A B Light

OFF OFF OFF

OFF ON OFF

ON OFF OFF

ON ON ON

Truth Table

OR

AND

Either (OR)

Both (AND)

-

-

A

B

A

B

A B Light

0 0 0

0 1 1

1 0 1

1 1 1

A B Light

0 0 0

0 1 0

1 0 0

1 1 1

Truth Table

0 = OFF
1 = ON OR

AND

Did you know?

George Boole Inventor of the idea
of logic gates. He was born in
Lincoln, England and he was the son
of a shoemaker in a low class family.

A

B

A

B

George Boole,(1815-1864)

OR

AND

Binary (two symbols: true and false) is the basis of
Logic Design

NOT:

AND:

OR:

Logic Gates

• digital circuit that either allows a signal to pass through it or not.
• Used to build logic functions
• There are seven basic logic gates:
 AND, OR, NOT,
 NAND (not AND), NOR (not OR), XOR, and XNOR (not XOR) [later]

A B Out

0 0 0

0 1 1

1 0 1

1 1 1

A B Out

0 0 0

0 1 0

1 0 0

1 1 1

A Out

A

B

A

B

A

NOT:

AND:

OR:

Logic Gates

• digital circuit that either allows a signal to pass through it or not.
• Used to build logic functions
• There are seven basic logic gates:
 AND, OR, NOT,
 NAND (not AND), NOR (not OR), XOR, and XNOR (not XOR) [later]

A B Out

0 0 0

0 1 1

1 0 1

1 1 1

A B Out

0 0 0

0 1 0

1 0 0

1 1 1

A Out

0 1

1 0

A

B

A

B

A

NOT:

AND:

OR:

Logic Gates

• digital circuit that either allows a signal to pass through it or not.
• Used to build logic functions
• There are seven basic logic gates:
 AND, OR, NOT,
 NAND (not AND), NOR (not OR), XOR, and XNOR (not XOR) [later]

A B Out

0 0 0

0 1 1

1 0 1

1 1 1

A B Out

0 0 0

0 1 0

1 0 0

1 1 1

A Out

0 1

1 0

A

B

A

B

A

A B Out

0 0 1

0 1 0

1 0 0

1 1 0

A B Out

0 0 1

0 1 1

1 0 1

1 1 0

A

B

A

B

NAND:

NOR:

Fill in the truth table, given the following Logic
Circuit made from Logic AND, OR, and NOT gates.

What does the logic circuit do?

a b Out

a

b
Out

XOR: out = 1 if a or b is 1, but not both;

 out = 0 otherwise.

 out = 1, only if a = 1 AND b = 0

 OR a = 0 AND b = 1

a b Out

0 0 0

0 1 1

1 0 1

1 1 0
a

b
Out

XOR: out = 1 if a or b is 1, but not both;

 out = 0 otherwise.

 out = 1, only if a = 1 AND b = 0

 OR a = 0 AND b = 1

a b Out

0 0 0

0 1 1

1 0 1

1 1 0
a

b
Out

Fill in the truth table, given the following Logic
Circuit made from Logic AND, OR, and NOT gates.

What does the logic circuit do?

a

b

d Out

a b d Out

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Multiplexor: select (d) between two inputs (a and b)
and set one as the output (out)?

 out = a, if d = 0

 out = b, if d = 1

a b d Out

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

a

b

d Out

From Switches to Logic Gates to Logic Circuits

Logic Gates

• From switches

• Truth Tables

Logic Circuits

• Identity Laws

• From Truth Tables to Circuits (Sum of Products)

Logic Circuit Minimization

• Algebraic Manipulations

• Truth Tables (Karnaugh Maps)

Transistors (electronic switch)

Given a Logic function, create a Logic Circuit that
implements the Logic Function…

…and, with the minimum number of logic gates

Fewer gates: A cheaper ($$$) circuit!

NOT:

AND:

OR:

XOR:

.

A B Out

0 0 0

0 1 1

1 0 1

1 1 1

A B Out

0 0 0

0 1 0

1 0 0

1 1 1

A Out

0 1

1 0

A

B

A

B

A

A B Out

0 0 0

0 1 1

1 0 1

1 1 0

A

B

NOT:

AND:

OR:

XOR:

.

A B Out

0 0 0

0 1 1

1 0 1

1 1 1

A B Out

0 0 0

0 1 0

1 0 0

1 1 1

A Out

0 1

1 0

A

B

A

B

A

A B Out

0 0 0

0 1 1

1 0 1

1 1 0

A

B

A B Out

0 0 1

0 1 0

1 0 0

1 1 0

A B Out

0 0 1

0 1 1

1 0 1

1 1 0

A

B

A

B

NAND:

NOR:

A B Out

0 0 1

0 1 0

1 0 0

1 1 1

A

B

XNOR:

NOT:
• out = ā = !a = a

AND:

• out = a ∙ b = a & b = a  b

OR:

• out = a + b = a | b = a  b

XOR:

• out = a  b = ab + āb

Logic Equations

• Constants: true = 1, false = 0
• Variables: a, b, out, …
• Operators (above): AND, OR, NOT, etc.

NOT:
• out = ā = !a = a

AND:

• out = a ∙ b = a & b = a  b

OR:

• out = a + b = a | b = a  b

XOR:

• out = a  b = ab + āb

Logic Equations

• Constants: true = 1, false = 0
• Variables: a, b, out, …
• Operators (above): AND, OR, NOT, etc.

NAND:

• out = a ∙ b = !(a & b) =  (a  b)

NOR:

• out = a + b = !(a | b) =  (a  b)

XNOR:

• out = a  b = ab + ab

• .

Identities useful for manipulating logic equations
– For optimization & ease of implementation

a + 0 =
a + 1 =
a + ā =

a ∙ 0 =
a ∙ 1 =
a ∙ ā =

Identities useful for manipulating logic equations
– For optimization & ease of implementation

a + 0 =
a + 1 =
a + ā =

a ∙ 0 =
a ∙ 1 =
a ∙ ā =

 a
 1
 1

 0
 a
 0

a

b

a

b

Identities useful for manipulating logic equations
– For optimization & ease of implementation

(a + b) =

(a ∙ b) =

a + a b =

a(b+c) =

a(b + c) =

Identities useful for manipulating logic equations
– For optimization & ease of implementation

(a + b) =

(a ∙ b) =

a + a b =

a(b+c) =

a(b + c) =

 a ∙ b

 a + b

 a

 ab + ac

 a + b ∙c

A

B

A

B
↔

A

B

A

B
↔

a + 0 =
a + 1 =
a + ā =
a 0 =
a 1 =
a ā =

(a + b) =
(a b) =
a + a b =
a(b+c) =
a(b + c) =

 a
 1
 1

 0
 a
 0

 a b
 a + b

 a
 ab + ac
 a + b ∙c

Show that the Logic equations

below are equivalent.

(a+b)(a+c) = a + bc

(a+b)(a+c) =

a + 0 =
a + 1 =
a + ā =
a 0 =
a 1 =
a ā =

(a + b) =
(a b) =
a + a b =
a(b+c) =
a(b + c) =

 a
 1
 1

 0
 a
 0

 a b
 a + b

 a
 ab + ac
 a + bc

Show that the Logic equations

below are equivalent.

(a+b)(a+c) = a + bc

(a+b)(a+c) = aa + ab + ac + bc

 = a + a(b+c) + bc

 = a(1 + (b+c)) + bc

 = a + bc

• functions: gates ↔ truth tables ↔ equations
• Example: (a+b)(a+c) = a + bc

a b c

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

a b c

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

a+b a+c LHS

0 0 0

0 1 0

1 0 0

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

bc RHS

0 0

0 0

0 0

1 1

0 1

0 1

0 1

1 1

• functions: gates ↔ truth tables ↔ equations
• Example: (a+b)(a+c) = a + bc

Binary (two symbols: true and false) is the basis of
Logic Design

More than one Logic Circuit can implement same
Logic function. Use Algebra (Identities) or Truth
Tables to show equivalence.

From Switches to Logic Gates to Logic Circuits

Logic Gates

• From switches

• Truth Tables

Logic Circuits

• Identity Laws

• From Truth Tables to Circuits (Sum of Products)

Logic Circuit Minimization

• Algebraic Manipulations

• Truth Tables (Karnaugh Maps)

Transistors (electronic switch)

How to standardize minimizing logic circuits?

How to implement a desired logic function?

a b c out

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0

How to implement a desired logic function?

a b c out

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0

1) Write minterms
2) sum of products:
• OR of all minterms where out=1

minterm

a b c

a b c

a b c

a b c

a b c

a b c

a b c

a b c

How to implement a desired logic function?

a b c out

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0

1) Write minterms
2) sum of products:
• OR of all minterms where out=1

• E.g. out = abc + a bc + ab c

corollary: any combinational circuit can be implemented in
two levels of logic (ignoring inverters)

minterm

a b c

a b c

a b c

a b c

a b c

a b c

a b c

a b c

c
out

b
a

How does one find the most efficient equation?

–Manipulate algebraically until…?

–Use Karnaugh maps (optimize visually)

–Use a software optimizer

For large circuits

–Decomposition & reuse of building blocks

a b c out

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

Sum of minterms yields

 out = abc + a bc + abc + ab c

a b c out

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

Sum of minterms yields

 out = abc + a bc + abc + ab c

Karnaugh maps identify

which inputs are (ir)relevant

to the output

0 0 0 1

1 1 0 1

00 01 11 10

0

1

c
ab

a b c out

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

Sum of minterms yields

 out = abc + a bc + abc + ab c

Karnaugh maps identify

which inputs are (ir)relevant

to the output

0 0 0 1

1 1 0 1

00 01 11 10

0

1

c
ab

a b c out

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

Sum of minterms yields

 out = abc + a bc + abc + ab c

Karnaugh map minimization

 Cover all 1’s

 Group adjacent blocks of 2n

1’s that yield a rectangular

shape

 Encode the common features

of the rectangle

 out = ab + a c
0 0 0 1

1 1 0 1

00 01 11 10

0

1

c
ab

Minterms can overlap

 out = bc + ac + ab

Minterms can span 2, 4, 8

or more cells

 out = c + ab

0 1 1 1

0 0 1 0

00 01 11 10

0

1

c
ab

1 1 1 1

0 0 1 0

00 01 11 10

0

1

c
ab

Minterms can overlap

 out = bc + ac + ab

Minterms can span 2, 4, 8

or more cells

 out = c + ab

0 1 1 1

0 0 1 0

00 01 11 10

0

1

c
ab

1 1 1 1

0 0 1 0

00 01 11 10

0

1

c
ab

The map wraps around

• out = b d

• out = b d

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

00 01 11 10

00

01

ab

cd

11

10

0 0 0 0

1 0 0 1

1 0 0 1

0 0 0 0

00 01 11 10

00

01

ab

cd

11

10

The map wraps around

• out = b d

• out = b d
1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

00 01 11 10

00

01

ab

cd

11

10

0 0 0 0

1 0 0 1

1 0 0 1

0 0 0 0

00 01 11 10

00

01

ab

cd

11

10

“Don’t care” values can be
interpreted individually in
whatever way is convenient

• assume all x’s = 1

• out = d

• assume middle x’s = 0

• assume 4th column x = 1

• out = b d

1 0 0 x

0 x x 0

0 x x 0

1 0 0 1

00 01 11 10

00

01

ab

cd

11

10

0 0 0 0

1 x x x

1 x x 1

0 0 0 0

00 01 11 10

00

01

ab

cd

11

10

“Don’t care” values can be
interpreted individually in
whatever way is convenient

• assume all x’s = 1

• out = d

• assume middle x’s = 0

• assume 4th column x = 1

• out = b d

1 0 0 x

0 x x 0

0 x x 0

1 0 0 1

00 01 11 10

00

01

ab

cd

11

10

0 0 0 0

1 x x x

1 x x 1

0 0 0 0

00 01 11 10

00

01

ab

cd

11

10

A multiplexer selects
between multiple inputs

• out = a, if d = 0

• out = b, if d = 1

Build truth table

Minimize diagram

Derive logic diagram

a

b

d

a b d out

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

a b d out

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

• Build a truth table
out = a bd + abd + abd + abd

a

b

d

a b d out

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

• Build the Karnaugh map

a

b

d

00 01 11 10

0

1

d
ab

a b d out

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

• Build the Karnaugh map

a

b

d

0 0 1 1

0 1 1 0

00 01 11 10

0

1

d
ab

• Derive Minimal Logic

Equation

• out = ad + bd

d out

b

a

00 01 11 10

0

1

d
ab

0 0 1 1

0 1 1 0

a b d out

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

a

b

d

Binary (two symbols: true and false) is the basis of
Logic Design

More than one Logic Circuit can implement same
Logic function. Use Algebra (Identities) or Truth
Tables to show equivalence.

Any logic function can be implemented as “sum of
products”. Karnaugh Maps minimize number of gates.

Dates to keep in Mind
• Prelims: Tue Mar 4th and Thur May 1st
• Lab 1: Due Fri Feb 14th before Winter break
• Proj2: Due Fri Mar 28th before Spring break
• Final Project: Due when final would be (not known until Feb 14th)

Lab Sections (start this week; today)
 T 2:55 – 4:10pm Carpenter Hall 104 (Blue Room)
 W 8:40—9:55am Carpenter Hall 104 (Blue Room)
 W 11:40am – 12:55pm Carpenter Hall 104 (BlueRoom)
 W 3:35 – 4:50pm Carpenter Hall 104 (Blue Room)
 W 7:30—8:45pm Carpenter Hall 235 (Red Room)
 R 8:40 – 9:55pm Carpenter Hall 104 (Blue Room)
 R 11:40 – 12:55pm Carpenter Hall 104 (Blue Room)
 R 2:55 – 4:10pm Carpenter Hall 104 (Blue Room)
 F 8:40 – 9:55am Carpenter Hall 104 (Blue Room)
 F 11:40am – 12:55pm Upson B7
 F 2:55 – 4:10pm Carpenter Hall 104 (Blue Room)

• Labs are separate than lecture and homework
• Bring laptop to Labs
• This week: intro to logisim and building an adder

Attempt to balance the iClicker graph

Register iClicker

• http://atcsupport.cit.cornell.edu/pollsrvc/

• iClicker GO

 http://pollinghelp.cit.cornell.edu/iclicker-go/#students

From Transistors to Gates to Logic Circuits

Logic Gates

• From transistors

• Truth Tables

Logic Circuits

• Identity Laws

• From Truth Tables to Circuits (Sum of Products)

Logic Circuit Minimization

• Algebraic Manipulations

• Truth Tables (Karnaugh Maps)

Transistors (electronic switch)

Transistors:

• 6:10 minutes (watch from from 41s to 7:00)

• http://www.youtube.com/watch?v=QO5FgM7MLGg

• Fill our Transistor Worksheet with info from Video

• NMOS Transistor

• Connect source to drain

when gate = 1

• N-channel

VD

VS = 0 V

VG VG = VS VG = 0 V

PMOS Transistor

Connect source to drain
when gate = 0

P-channel

VS= 0 V

VD

VG VG = VS VG = 0 V

• NMOS Transistor

• Connect source to drain

when gate = 1

• N-channel

VD

VS = 0 V

VG VG = 1 VG = 0

PMOS Transistor

Connect source to drain
when gate = 0

P-channel

VG VG = 1 VG = 0

VS= 0 V

VD

In Out

0 1

1 0

• Function: NOT

• Called an inverter

• Symbol:

• Useful for taking the

inverse of an input

• CMOS: complementary-symmetry metal–oxide–

semiconductor

in out

Truth table

in out

Vsupply (aka logic 1)

0 1

(ground is logic 0)

In Out

0 1

1 0

• Function: NOT

• Called an inverter

• Symbol:

• Useful for taking the

inverse of an input

• CMOS: complementary-symmetry metal–oxide–

semiconductor

in out

Truth table

in out

Vsupply

1 0

Vsupply (aka logic 1)

(ground is logic 0)

A Out

0 1

1 0

• Function: NOT

• Called an inverter

• Symbol:

• Useful for taking the

inverse of an input

• CMOS: complementary-symmetry metal–oxide–

semiconductor

in out

Truth table

A = 0 Out = 1 A = 1 Out = 0 in out

Vsupply Vsupply (aka logic 1)

(ground is logic 0)

A B out

0 0 1

1 0 1

0 1 1

1 1 0

• Function: NAND

• Symbol:

b

a
out

A

out

Vsupply

B

B A

Vsupply

1

1

1 1

0

A B out

0 0 1

1 0 0

0 1 0

1 1 0

• Function: NOR

• Symbol:

b

a
out

A

out

Vsupply

B

B A

0

0

0 0

1

NOT:

AND:

OR:

NAND and NOR are universal

• Can implement any function with NAND or just NOR gates
• useful for manufacturing

NOT:

AND:

OR:

NAND and NOR are universal

• Can implement any function with NAND or just NOR gates
• useful for manufacturing

b

a

b

a

a

One can buy gates separately

• ex. 74xxx series of
integrated circuits

• cost ~$1 per chip, mostly
for packaging and testing

Cumbersome, but possible to
build devices using gates put
together manually

The first transistor

• on a workbench at

 AT&T Bell Labs in 1947

• Bardeen, Brattain, and Shockley

• An Intel Haswell
– 1.4 billion transistors

– 177 square millimeters

– Four processing cores

http://techguru3d.com/4th-gen-intel-haswell-processors-architecture-and-lineup/

Hide complexity through simple abstractions

• Simplicity

– Box diagram represents inputs and outputs

• Complexity

– Hides underlying NMOS- and PMOS-transistors and atomic
interactions

in out

Vdd

Vss

in out
out

a

d

b

a

b

d out

Most modern devices are made from billions of on /off
switches called transistors

• We will build a processor in this course!

• Transistors made from semiconductor materials:
– MOSFET – Metal Oxide Semiconductor Field Effect Transistor

– NMOS, PMOS – Negative MOS and Positive MOS

– CMOS – complementary MOS made from PMOS and NMOS transistors

• Transistors used to make logic gates and logic circuits

We can now implement any logic circuit
• Can do it efficiently, using Karnaugh maps to find the minimal

terms required

• Can use either NAND or NOR gates to implement the logic
circuit

• Can use P- and N-transistors to implement NAND or NOR gates

