Gates and Logic:
From switches to Transistors,
Logic Gates and Logic Circuits

Prof. Kavita Bala and Prof. Hakim Weatherspoon
CS 3410, Spring 2014
Computer Science
Cornell University

See: P&H Appendix B.2 and B.3 (Also, see B.1)

Goals for Today

From Switches to Logic Gates to Logic Circuits
Understanding the foundations of

Computer Systems Organization and Programming

COMPUTER |
ORGANIZATION
AND DESIGN

Goals for Today

From Switches to Logic Gates to Logic Circuits
Understanding the foundations of
Computer Systems Organization and Programming
e.g. Galaxy Note 3

Goals for Today

From Switches to Logic Gates to Logic Circuits
Understanding the foundations of
Computer Systems Organization and Programming
e.g. Galaxy Note 3
with the big.LITTLE 8-core ARM processor

15!
Quad-core CPU
21\0 Q A
ore CPU

Goals for Today

From Switches to Logic Gates to Logic Circuits
Understanding the foundations of
Computer Systems Organization and Programming

e.g. Galaxy Note 3

with the big.LITTLE 8-core ARM processor
big Quad Core LITTLE Quad Core

Architecture ARM v7a ARM v7a

Process Samsung 28nm Samsung 28nm

Frequency 200MHz~1.8GHz+ | 200MHz~1.2GHz

Area 19mm?2 3.8mm?2

Power-ratio 1 0.17

L1 Cache Size 32 KB I/D Cache 32 KB I/D Cache

L2 Cache Size 2 MB Data Cache |512 KB Data Cache

Goals for Today

From Switches to Logic Gates to Logic Circuits
Logic Gates

* From switches
 Truth Tables

Logic Circuits

* |dentity Laws

* From Truth Tables to Circuits (Sum of Products)
Logic Circuit Minimization

* Algebraic Manipulations

* Truth Tables (Karnaugh Maps)
Transistors (electronic switch)

A switch

| h e Acts as a conductor or
l insulator
|
- Can be used to build

LN amazing things...

The Bombe used to break the German
Enigma machine during World War Il

Basic Building Blocks: Switches to Logic Gates

~ ”~
Truth Table

A

OFF | OFF
| OFF | ON

ON | OFF
ON | ON

Basic Building Blocks: Switches to Logic Gates

A Truth Table

 \ \ :
() ()) A |B |Light
OFF | OFF | OFF
OFF | ON ON
B O\ N\ ON |[OFF| ON
-/ / ON |ON | ON

~ ”~

OFF | ON
ON | OFF
ON | ON

* Aoé E)) A |B |Light
OFF | OFF
WIS

Basic Building Blocks: Switches to Logic Gates

Truth Table

A |B |Light
OFF | OFF | OFF
OFF |[ON | ON
ON |OFF| ON
ON |ON | ON

~, ”

" 00
e 0
* Aoé E)) A |B |Light
OFF | OFF
4304

OFF | ON
ON | OFF
ON | ON

Basic Building Blocks: Switches to Logic Gates

Either (OR)

Truth Table
A O .
_ A B Light

OFF | OFF | OFF
OFF |[ON | ON

B O/C> | ON |OFF| ON
ON |[ON | ON

Both (AND)

* AO/ O] A |B |Light
OFF | OFF | OFF

OFF |ON | OFF

B C J/ ON |OFF | OFF
O ON |[ON | ON

Basic Building Blocks: Switches to Logic Gates

Either (OR)

Truth Table

A |B [Light
OFF | OFF | OFF

OR OFF |ON | ON
B ON |OFF| ON
ON |ON | ON

Both (AND)
A] A |B |Light
OFF | OFF | OFF
AND OFF |ON | OFF
B ON | OFF | OFF
| ON |ON | ON

Basic Building Blocks: Switches to Logic Gates

A
OR
B
A
AND
_B

Either (OR)
Truth Table
A |B |Lignt
0 0 0
0 1 1
1 0 1
1 1 1
Both (AND)
A B Light
0 0 0
0 1 0
1 0 0
1 1 1

0 = OFF
1=0ON

Basic Building Blocks: Switches to Logic Gates

A
George Boole,(1815-1864)
A Did you know?
George Boole Inventor of the idea
AND of logic gates. He was born in
_ B Lincoln, England and he was the son
of a shoemaker in a low class family.

Takeaway

Binary (two symbols: true and false) is the basis of
Logic Design

Building Functions: Logic Gates

A | Out
A| B| Out
AND: A— 9,0p O
o] 1 0
B— 110] o
11 1 1

Out

OR:
A
D -

Logic Gates
 digital circuit that either allows a signal to pass through it or not.
e Used to build logic functions
* There are seven basic logic gates:
AND, OR, NOT,
NAND (not AND), NOR (not OR), XOR, and XNOR (not XOR) [later]

AAOO>
O | |O1
AAAO

Building Functions: Logic Gates
NOT: & 1

0 1
1 0
AND: A—
B_
OR:
A
3>

Logic Gates
 digital circuit that either allows a signal to pass through it or not.
e Used to build logic functions
* There are seven basic logic gates:

AND, OR, NOT,
NAND (not AND), NOR (not OR), XOR, and XNOR (not XOR) [later]

Out

| |lO|O|>
||~ 1O
- |O|O | O

Out

| |lO|O>
|| 10|
A lalal O

Building Functions: Logic Gates

A | Out
NOT: a P
1 0
Al B| Out Al B| Out
AND: A— /0] O NAND: r— /0] 1
ol1] o ol 1 1
B— 110l o B— 10| 1
1] 1 1 111] o
OR: Al B| out NOR: Al B| out
A A
olo| o olo| 1
11o0] 1 110 o
1] 1 1 111] o

Logic Gates
 digital circuit that either allows a signal to pass through it or not.
e Used to build logic functions
* There are seven basic logic gates:
AND, OR, NOT,
NAND (not AND), NOR (not OR), XOR, and XNOR (not XOR) [later]

Activity#1: Logic Gates

Fill in the truth table, given the following Logic
Circuit made from Logic AND, OR, and NOT gates.

What does the logic circuit do?

a b Out

T)
D5

Activity#1: Logic Gates
XOR:out=1ifaorbis 1, but not both;

out = 0 otherwise.
out=1,onlyifa=1ANDb=0
OR a=0ANDDb=1

Out

R, OOl
R 1 Ol |O]lT
O|F—,r|F—=]|O

S '1%)
ol

Activity#1: Logic Gates
XOR:out=1ifaorbis 1, but not both;

out = 0 otherwise.
out=1,onlyifa=1ANDb=0
OR a=0ANDDb=1

Out

R, OOl
R 1 Ol |O]lT
O|F—,r|F—=]|O

d Out
b

Activity#2: Logic Gates

Fill in the truth table, given the following Logic
Circuit made from Logic AND, OR, and NOT gates.

What does the logic circuit do?

a b d Out

o |o Jo

o |o |1

o |1 Jo 3

o |1 |1 _>_

1 o Jo d 4I>O_ Out
1 o |1

1 |1 o) _

1 |1 |1 J

Activity#2: Logic Gates

Multiplexor: select (d) between two inputs (a and b)
and set one as the output (out)?

out=a,ifd=0
out=b,ifd=1
a b d Out
0 0 0 0
0 0 1 0
0 1 0 0 a
0 1 1 1 _>_
1 o |o |1 d 4I>O_ Out
1 0 1 0
1 1 0 1 b _
1 1 1 1 /

Goals for Today

From Switches to Logic Gates to Logic Circuits
Logic Gates

* From switches
 Truth Tables

Logic Circuits

* |dentity Laws

* From Truth Tables to Circuits (Sum of Products)
Logic Circuit Minimization

* Algebraic Manipulations

* Truth Tables (Karnaugh Maps)
Transistors (electronic switch)

Next Goal

Given a Logic function, create a Logic Circuit that
implements the Logic Function...

...and, with the minimum number of logic gates

Fewer gates: A cheaper (SSS) circuit!

~ | o —w]O|OC|O| 1O |~ |~ | 1O |~ |
=773 3 3
@)
NMjo|~]|O| Mo~ |o|~ Mo~ | o
<o~ |I<[olol=[= <|olo|~]|~+ <|o|o|~

Logic Gates

XOR:

1

Al B| Out

Al B| Out

Al B| Out

0
0
1

NAND: a—

NOR:

XNOR:

.

0

Logic Gates

A | Out

Al B| Out

0

Al B| Out

Al B| Out

0

0
0
1

XOR:

Logic Equations
NOT:

e out=23

= —d

I
=
I

AND:

e out=a-b =a&b=aAb

OR:

e out=a+b =alb=avb

XOR: ~
e out=a®b=ab+ab

Logic Equations
e Constants:true=1, false=0

e Variables: a, b, out, ...
* Operators (above): AND, OR, NOT, etc.

Logic Equations

NOT:
e out 93 = la = —a
AND: NAND: [
e outFa‘b ¥a&b=aAnb ¢ outf§a:b E!/(a&b) =—(anb)

OR: NOR:
e outFa+b Fa|b =avb e outFa+b3i!(a]|b) ==(avh)

XOR: ~ XNOR: o
e outa\a®@ l=ab+ab e out=\a® hy=ab+ab

Logic Equations
e Constants:true=1, false=0

e Variables: a, b, out, ...
* Operators (above): AND, OR, NOT, etc.

|dentities
ldentities useful for manipulating logic equations

— For optimization & ease of implementation
a+0=
a+l-=
a+a=

Q O QO
QI = O
1

|dentities

ldentities useful for manipulating logic equations
— For optimization & ease of implementation

a+0-=
a+l=

a+a-=

Q O QD

QI = O

a
1
1

Q)

oo

/

0o
A
00

|dentities

ldentities useful for manipulating logic equations
— For optimization & ease of implementation

(a+b)

(a - b)

a+ab

a(b+c)

a(b + ¢)

|dentities

ldentities useful for manipulating logic equations
— For optimization & ease of implementation

_ = A A—C
(a+b) =a-b BD@ B_CD—

(a:-b) =a+b
a+ab =a
a(b+c) =ab+ac

a(b+c)=a+b-c

%}
y

Activity #2: Identities

Show that the Logic equations
below are equivalent.

(a+b)(a+c) =a + bc

(a+b)(a+c) =

Activity #2: Identities

a+0= a2 Show that the Logic equations
a+l= 1 .
_ below are equivalent.

a+a= 1
a0 =0
al = a (a+b)(a+c) =a + bc
aa = 0

= (a+b)(a+c) =aa+ab +ac+ bc
(a+b) =Ei—b—_ =a+a(b+c) + bc
(ab) = a+b
S+ab =3 =a(1 + (b+c)) + bc
a(b+c) = ab+ac =a+bc
a(b+c)=a+bc

Logic Manipulation
* functions: gates <> truth tables <= equations

 Example: (a+b)(a+c) =a + bc

alb| c

= | = = = Ol O O] O
= = O O = | =| O O
= | O| = | O =| O| =] O

Logic Manipulation
* functions: gates <> truth tables <= equations

 Example: (a+b)(a+c) =a + bc
al|lb| c a+b a+c m
olojo| o© 0 0 | 0 0 |
0|01 0 1 0 0 0
0|10 1 0 0 0 0
011 1 1 1 1 1
1(0]0 1 1 1 0 N 1
101 1 1 1 0 1
1(1]0 1 1 | 1 0 \ 1
111 1 1 \1/ 1 \ 1/

C

N4

Takeaway

Binary (two symbols: true and false) is the basis of
Logic Design

More than one Logic Circuit can implement same
Logic function. Use Algebra (ldentities) or Truth
Tables to show equivalence.

Goals for Today

From Switches to Logic Gates to Logic Circuits
Logic Gates

* From switches
 Truth Tables

Logic Circuits

* |dentity Laws

* From Truth Tables to Circuits (Sum of Products)
Logic Circuit Minimization

* Algebraic Manipulations

* Truth Tables (Karnaugh Maps)
Transistors (electronic switch)

Next Goal

How to standardize minimizing logic circuits?

Logic Minimization
How to implement a desired logic function?

alb|c| out
00/0| O
001 1
01/0/ O
011 1
110/0| O
1101 1
1/11/0| O
1/1/1| O

Logic Minimization
How to implement a desired logic function?

alblc | out Iminterml 1) Write minterms

ololol O 3bc 2) sum of products:

olol1l 1 abec | ° OR of all minterms where out=1
0/1(/0| 0 | abc

0/1/1] 1 | abc

1/0/0| O abc

1101 1 abc

1/11/0| O abc

1/1/1| O abc

Logic Minimization
How to implement a desired logic function?

out Iminterm 1) Write minterms

alb|c
ololol o 3bc | 2) sum of products:
11| —=——+< OR of all minterms where out=1
0[0/1| 1 abc > ! °
0110/ 0 | abc | « Eg. out=abc+abc+abc
<0/1/1] 1 | abc P s ——q
100| O abc c 14 e J .
qifo/1] 1 | abc . -—OB_
1/11/0| O abc t
1/1/1| O abc J \
-
corollary: any combinational circuit can be implemented in

two levels of logic (ignoring inverters)

Karnaugh Maps

How does one find the most efficient equation?
—Manipulate algebraically until...?

— Use Karnaugh maps (optimize visually)

— Use a software optimizer

For large circuits
—Decomposition & reuse of building blocks

Minimization with Karnaugh maps (1)

@ Sum of minterms yields

AW AW ANYA

m OUt =
alb |c out
o —o |
0 |0 |1 1
01 |0 0
o1 (1] 1 _I>
—

1[0 |0 1 >
T 0 |1 1 ~>
1|1 |0 0
111 |1 0

Minimization with Karnaugh maps (2)

@ Sum of minterms yields
= Oout = abc + abc + abc + abc

out

® Karnaugh maps identify
which inputs are (ir)relevant
to the output

Rl PIPIO|IOC|IOC|O| D
RPIFRP|O|IO|IFR|IFL|IO|O|T

Rlo|lr|o|lr|lo|lr|o]|o

oO|lo|FR|IFP|FLP|O|PFL]|O

Q
(on

c 00 01 11 10

o

=

Minimization with Karnaugh maps (2)

@ Sum of minterms yields
= Oout = abc + abc + abc + abc

out

® Karnaugh maps identify
which inputs are (ir)relevant
to the output

Rl PIPIO|IOC|IOC|O| D
RPIFRP|O|IO|IFR|IFL|IO|O|T

Rlo|lr|o|lr|lo|lr|o]|o

oO|lo|FR|IFP|FLP|O|PFL]|O

c 00 01 11 10

Minimization with Karnaugh maps (2)

out

Rl PIPIO|IOC|IOC|O| D
RPIFRP|O|IO|IFR|IFL|IO|O|T
RP|O|FR,P|O|FR|O|EFL]|O|O
oO|lo|FR|IFP|FLP|O|PFL]|O

c 00 01 11

@ Sum of minterms yields
= Oout = abc + abc + abc + abc

@ Karnaugh map minimization
s Coverall 1's

= Group adjacent blocks of 2"
1's that yield a rectangular
shape

s Encode the common features
of the rectangle

¢ out =

Karnaugh Minimization Tricks (1)

ab
¢ 00 01 11 10

010 |1 1

110 (0 (110

ab
¢ 00 01 11 10

o [Tt) @Minterms can span 2, 4, 8
or more cells

m OUT 3

@ Minterms can overlap
m Out =

110 (0 (110

C

C

Karnaugh Minimization Tricks (1)

ab

OO 01 11 10

0

0

1

1

1

0

0

0

ab

0

1

OO 01 11 10

1

1

1

0

0

0

@ Minterms can overlap
m OUt =bc + ac + ab

@ Minterms can span 2, 4, 8
or more cells

m out=7c+ ab

Karnaugh Minimization Tricks (2)

ab

cd
00
01

11
10

00

01

11

o

]

Ol) O

|l O0| OO

|l O OO

o

ab

cd
00

01

11
10

|>—a|oo:—-—=g

|l OO0

|l O OO

[H]oo’f—TE‘

The map wraps around

* out=

Karnaugh Minimization Tricks (2)

ab

cd
00
01

11
10

00

01

11

o

]

Ol) O

|l O0| OO

|l O OO

oI~ TF

ab

cd
00

01

11
10

|x-—«s|oor~=g

|l OO0

|l O OO

[s—a]oo@?'c‘;

The map wraps around
e out = bd

Karnaugh Minimization Tricks (3)

ab
cd 00 01 11 10
010 |0 |0 |0 “Don’t care” values can be
0111 |x [x [x interpreted individually in
11 (1 I x Ix |1 whatever way is convenient
101o (o0 |0 |0 assumeallx’s=1
2b * out=
cd O0 01 11 10
ool[1]]0 [0 |l |
e assume middle x’s =0
0110 |x [x |0
e assume 4t columnx=1
1110 |x (x |0 . out =
10 [ﬂ 0 [0 |1 |

Karnaugh Minimization Tricks (3)

ab
cd 00 01 11 10
010 (0 |0 (O “Don’t care” values can be
0111 |x [x [x interpreted individually in
11 (1 x Ix |1, whatever way is convenient
101o (o0 |0 |0 assumeallx’s=1
b e out=d
cd O0 01 11 10
ool [1]{0 |0 |ix ,
e assume middle x’s =0
0110 |x [x |0
e assume 4t columnx=1
1110 |x (x |0 = =
0 e out=bd
[ﬂ 0 [0 |1 |

Multiplexer

A multiplexer selects
between multiple inputs
e out=2a,ifd=0
e out=Db,ifd=1

out

Build truth table

Minimize diagram

Derive logic diagram

_ | =_ 2 ~O)O|OCO|O D

_ =]O|O|~|~|O|O|T

OO~ |1O|=~|O|Q

Multiplexer Implementation

B Build a truth table

| out = abd + abd + abd + abd

d
alb |d out
0|10 |0 0
0|0 [1 0
01110 0
o1 |1 1
110 (0 1
1(0 |1 0
1(1 10 1
111 [1 1

Multiplexer Implementation

d
alb |d out
0|10 |0 0
0|0 [1 0
01110 0
o1 |1 1
110 (0 1
1(0 |1 0
1(1 10 1
111 [1 1

* Build the Karnaugh map

d

ab

0

1

OO0 01 11 10

Multiplexer Implementation

d
alb |d out
0|10 |0 0
0|0 [1 0
01110 0
o1 |1 1
110 (0 1
1(0 |1 0
1(1 10 1
111 [1 1

* Build the Karnaugh map

d

ab

0

1

00 01 11 10
0 |0 |1 |1
O 1 |1 |0

Multiplexer Implementation

b — * Derive Minimal Logic
; Equation
ab
dN_ 00 01 11 10
alb |d out o [o [0 (T 11
00 |0 0
00 |1 0 1lo [T 1110
0|1 |0 0
0|1 |1 1 e out=ad + bd
110 |0 1 3
1]0 |1 0 }
111 |0 1 d__[>o‘ out
101 |1 1 Y\ D
i B

Takeaway

Binary (two symbols: true and false) is the basis of
Logic Design

More than one Logic Circuit can implement same
Logic function. Use Algebra (ldentities) or Truth
Tables to show equivalence.

Any logic function can be implemented as “sum of
products”. Karnaugh Maps minimize number of gates.

Administrivia
Dates to keep in Mind
* Prelims: Tue Mar 4t and Thur May 15t
e Lab 1: Due Fri Feb 14t before Winter break
* Proj2: Due Fri Mar 28" before Spring break
* Final Project: Due when final would be (not known until Feb 14th)

Lab Sections (start this week; today)

T 2:55-4:10pm Carpenter Hall 104 (Blue Room)
W 8:40—9:55am Carpenter Hall 104 (Blue Room)
W 11:40am —12:55pm Carpenter Hall 104 (BlueRoom)
W 3:35-4:50pm Carpenter Hall 104 (Blue Room)
W 7:30—8:45pm Carpenter Hall 235 (Red Room)
R 8:40 — 9:55pm Carpenter Hall 104 (Blue Room)
R 11:40-12:55pm Carpenter Hall 104 (Blue Room)
R 2:55-4:10pm Carpenter Hall 104 (Blue Room)
F 8:40 — 9:55am Carpenter Hall 104 (Blue Room)
F 11:40am —12:55pm Upson B7

F 2:55-4:10pm Carpenter Hall 104 (Blue Room)

e Labs are separate than lecture and homework
* Bring laptop to Labs
* This week: intro to logisim and building an adder

iClicker

Attempt to balance the iClicker graph

Register iClicker

* http://atcsupport.cit.cornell.edu/pollsrvc/
* iClicker GO
http://pollinghelp.cit.cornell.edu/iclicker-go/#students

Goals for Today

From Transistors to Gates to Logic Circuits
Logic Gates

* From transistors
e Truth Tables

Logic Circuits

* |dentity Laws

* From Truth Tables to Circuits (Sum of Products)
Logic Circuit Minimization

* Algebraic Manipulations

* Truth Tables (Karnaugh Maps)
Transistors (electronic switch)

Activity#1 How do we build electronic

L switches?
Transistors:

 6:10 minutes (watch from from 41s to 7:00)
e http://www.youtube.com/watch?v=Q05FgM7MLGg

* Fill our Transistor Worksheet with info from Video

NMOS and PMOS Transistors

« NMOS Transistor PMOS Transistor

VA Vg=0V

] ! | I
Ve = Vg V=0V VG—O Ve=Vs Vg=0V

V
? ®
VS=OVj_ N I Vp ‘ T

« Connect source to drain Connect source to drain
when gate = 1 when gate =0

« N-channel P-channel

NMOS and PMOS Transistors

« NMOS Transistor PMOS Transistor
VA Vg=0V

1y . .

VG VG=1 VG=O \ \/G_O VG=1 VG=O

? ®
VS=OVj_ N Vp ‘ T

« Connect source to drain Connect source to drain
when gate = 1 when gate =0

« N-channel P-channel

Vupply (@ka logic 1)

In | Out
Qo | 1D
1 0

Truth table

Inverter

 Function: NOT
e Called an inverter
« Symbol:

in 4[>Q_ out

« Useful for taking the
iInverse of an input

CMOS: complementary-symmetry metal—-oxide—
semiconductor

Vsupply (@ka logic 1)

(ground is logic 0)

In | Out
0 1
 ———————
1 0

Truth table

Inverter

 Function: NOT
e Called an inverter
« Symbol:

in 4[>Q_ out

« Useful for taking the
iInverse of an input

CMOS: complementary-symmetry metal—-oxide—
semiconductor

Inverter

Vsupply (@ka logic 1)

— I * Function: NOT
: —0oYOut=1 A _1%0ut=0 ,
in outA =03 A=1L—""e Called an inverter

=

j_ « Symbol:
— — in 4[>O— out

(ground is logic 0)

A _|Out « Useful for taking the

0 1 inverse of an input

1 O . CMOS: complementary-symmetry metal—-oxide—
semiconductor

Truth table

o|l=Oo|>

—

NAND Gate

 Function: NAND
« Symbol:

a
b

out

~o|~]ol>
N Y E=] I=N v

o | o | Ol —

NOR Gate

 Function: NOR
« Symbol:

2 out
1 b
out

Building Functions (Revisited)

NOT: —>o—
AND: :j_

NAND and NOR are universal

 Canimplement any function with NAND or just NOR gates
* useful for manufacturing

Building Functions (Revisited)

O e)
M T e
oR: 5)

NAND and NOR are universal

 Can implement any function with NAND or just NOR gates
e useful for manufacturing

Logic Gates

One can buy gates separately

* ex. 74xxx series of
integrated circuits

* cost ~S1 per chip, mostly
for packaging and testing

Cumbersome, but possible to
build devices using gates put
together manually

Then and Now

4th Generation Intel® Core™ Processor Die Map
22nm Tri-Gate 3-D Transistors

Y o [V o
PSR System ¢
I Agent, |
(EETE

Engine &

e | T
s] Controller |
! — :

including §

TEE A EE R EHEED oo e |
Shared L3 Cache** .

&
:

Bt onamen]

Quad core die shown above Transistor count: 1.4 Billion | Die size: 177mm?2

** Cache is shared across all 4 cores and processor graphics

| ’ http://techguru3d.com/4th-gen-intel-haswell-processors-architecture-and-lineup/

The first transistor * An Intel Haswell

— 1.4 billion transistors

— 177 square millimeters
Four processing cores

* on a workbench at
AT&T Bell Labs in 1947
* Bardeen, Brattain, and Shockley

Then and Now

, Memory Controller
* DDQ, V-Uncore

.. -
_:\::::::::r.:*‘ Cache 55 o5 = E

it MRS EEL Y 0ndoreG

http://www.theregister.co.uk/2010/02/03/intel_westmere_ep_preview/

The first transistor An Intel Westmere

— 1.17 billion transistors
— 240 square millimeters
— Six processing cores

* on a workbench at
AT&T Bell Labs in 1947
* Bardeen, Brattain, and Shockley

Big Picture: Abstraction
Hide complexity through simple abstractions
e Simplicity
— Box diagram represents inputs and outputs
 Complexity

— Hides underlying NMOS- and PMOS-transistors and atomic
interactions

vdd :
4_03 ot > }
L
— . 2 -

. d | | out
in AI >0O— out
b_

Summary

Most modern devices are made from billions of on /off
switches called transistors
* We will build a processor in this course!

* Transistors made from semiconductor materials:

— MOSFET — Metal Oxide Semiconductor Field Effect Transistor
— NMOS, PMOS — Negative MOS and Positive MOS
— CMOS — complementary MOS made from PMOS and NMQOS transistors

* Transistors used to make logic gates and logic circuits
We can now implement any logic circuit

* Can do it efficiently, using Karnaugh maps to find the minimal
terms required

* Can use either NAND or NOR gates to implement the logic
circuit
* Can use P- and N-transistors to implement NAND or NOR gates

