
Prof. Kavita Bala and Prof. Hakim Weatherspoon

CS 3410, Spring 2014

Computer Science

Cornell University

Bridge the gap between hardware and software
• How a processor works

• How a computer is organized

Establish a foundation for building higher-level
applications
• How to understand program performance

• How to understand where the world is going

Electrical Switch
• On/Off

• Binary

Transistor

The first transistor on a
workbench at AT&T Bell Labs in
1947

1965
• number of transistors that can be integrated on a

die would double every 18 to 24 months (i.e., grow
exponentially with time)

Amazingly visionary
• 2300 transistors, 1 MHz clock (Intel 4004) - 1971
• 16 Million transistors (Ultra Sparc III)
• 42 Million transistors, 2 GHz clock (Intel Xeon) – 2001
• 55 Million transistors, 3 GHz, 130nm technology, 250mm2 die (Intel

Pentium 4) – 2004
• 290+ Million transistors, 3 GHz (Intel Core 2 Duo) – 2007
• 721 Million transistors, 2 GHz (Nehalem) - 2009
• 1.4 Billion transistors, 3.4 GHz Intel Haswell (Quad core) – 2013

SUN-4/260 MIPS M/120

MIPS M2000

IBM RS6000

HP 9000/750 DEC AXP/500

IBM POWER 100 DEC Alpha 4/266

DEC Alpha 5/500 DEC Alpha 21264/600

DEC Alpha 5/300

DEC Alpha 21264A/667

Intel Xeon/2000

Intel Pentium 4/3000

1965
• number of transistors that can be integrated on a

die would double every 18 to 24 months (i.e., grow
exponentially with time)

Amazingly visionary
• 2300 transistors, 1 MHz clock (Intel 4004) - 1971
• 16 Million transistors (Ultra Sparc III)
• 42 Million transistors, 2 GHz clock (Intel Xeon) – 2001
• 55 Million transistors, 3 GHz, 130nm technology, 250mm2 die (Intel

Pentium 4) – 2004
• 290+ Million transistors, 3 GHz (Intel Core 2 Duo) – 2007
• 721 Million transistors, 2 GHz (Nehalem) - 2009
• 1.4 Billion transistors, 3.4 GHz Intel Haswell (Quad core) – 2013

CPU: Central Processing Unit

• An Intel Haswell
• 1.4 billion transistors

• 177 square millimeters

• Four processing cores

http://techguru3d.com/4th-gen-intel-haswell-processors-architecture-and-lineup/

• The first transistor
• One workbench at AT&T Bell Labs

• 1947

• Bardeen, Brattain, and Shockley

• Galaxy Note 3
• 8 processing cores

• The first transistor
• One workbench at AT&T Bell Labs

• 1947

• Bardeen, Brattain, and Shockley

CPU: Central Processing Unit

GPU: Graphics Processing Unit

• Petaflops (1015)

– GPUs/multicore/100s-1000s cores

Bridge the gap between hardware and software
• How a processor works

• How a computer is organized

Establish a foundation for building higher-level
applications
• How to understand program performance

• How to understand where the world is going

Instructor: Kavita Bala and Hakim Weatherspoon

(kb@cs.cornell.edu, hweather@cs.cornell.edu)

Lecture:

• Tu/Th 1:25-2:40

• Statler Auditorium

Lab sections:

• Start next week

• Carpenter 104 (Blue room)

• Carpenter 235 (Red room)

• Upson B7

Required Textbooks

Suggested
Textbook

Prof. Kavita Bala
• Ugrad: IIT Bombay
• PhD: MIT
• Started in compilers and systems
• Moved to graphics
• Also work on parallel processing in graphics

http://showroom.labs.autodesk.com/

Prof. Hakim Weatherspoon
• (Hakim means Doctor, wise, or prof. in Arabic)
• Background in Education

– Undergraduate University of Washington
 Played Varsity Football

» Some teammates collectively make $100’s of millions
» I teach!!!

– Graduate University of California, Berkeley
 Some class mates collectively make $100’s of millions
 I teach!!!

• Background in Operating Systems
– Peer-to-Peer Storage

 Antiquity project - Secure wide-area distributed system
 OceanStore project – Store your data for 1000 years

– Network overlays
 Bamboo and Tapestry – Find your data around globe

– Tiny OS
 Early adopter in 1999, but ultimately chose P2P direction

Cloud computing/storage

• Optimizing a global network of data centers

cs3410-staff-l@cs.cornell.edu

Lab/Homework TA’s

• Paul Upchurch <paulu@cs.cornell.edu> (PhD)
• Zhiming Shen <zshen@cs.cornell.edu> (PhD)
• Pu Zhang <pz59@cornell.edu> (PhD)
• Andrew Hirsch <akh95@cornell.edu> (PhD)
• Emma Kilfoyle <efk23@cornell.edu> (MEng)
• Roman Averbukh <raa89@cornell.edu> (MEng)
• Lydia Wang <lw354@cornell.edu> (MEng)
• Favian Contreras <fnc4@cornell.edu>
• Victoria Wu <vw52@cornell.edu>
• Detian Shi <ds629@cornell.edu>
• Maxwell Dergosits <mad293@cornell.edu>
• Jimmy Zhu <jhz22@cornell.edu>
• Antoine Pourchet <app63@cornell.edu>
• Brady Jacobs <bij4@cornell.edu>
• Kristen Tierney <kjt54@cornell.edu>
• Gary Zibrat <gdz4@cornell.edu>
• Naman Agarwal <na298@cornell.edu>
• Sanyukta Inamdar <sri7@cornell.edu>
• Sean Salmon <ss2669@cornell.edu>
• Ari Karo <aak82@cornell.edu>
• Brennan Chu <bc385@cornell.edu>

Administrative Assistant:
• Molly Trufant (mjt264@cs.cornell.edu)

CS 2110 is required (Object-Oriented Programming and Data
Structures)

• Must have satisfactorily completed CS 2110

• Cannot take CS 2110 concurrently with CS 3410

CS 3420 (ECE 3140) (Embedded Systems)

• Take either CS 3410 or CS 3420
– both satisfy CS and ECE requirements

• However, Need ENGRD 2300 to take CS 3420

CS 3110 (Data Structures and Functional Programming)

• Not advised to take CS 3110 and 3410 together

CS 2043 (UNIX Tools and Scripting)

• 2-credit course will greatly help with CS 3410.

• Meets Mon, Wed, Fri at 11:15am-12:05pm in Hollister (HLS) B14

• Class started yesterday and ends March 5th

CS 2022 (Introduction to C) and CS 2024 (C++)

• 1 to 2-credit course will greatly help with CS 3410

• Unfortunately, offered in the fall, not spring

• Instead, we will offer a primer to C during lab sections

 and include some C questions in homeworks

Week Date (Tue) Lecture# Lecture Topic HW Prelim Evening Lab Topic Lab/Proj

1 23-Jan 1 K&H Intro

 28-Jan 2 H Logic & Gates Logisim Lab 0: Adder/Logisim intro Handout

2 3 K Numbers & Arithmetic

 4-Feb 4 H KB(out) State & FSMs

HW1: Logic,
Gates, Numbers,
& Arithmetic ALU/Design Docs lab 1: ALU Handout (design doc due

3 5 H KB(out) Memory one-week, lab1 due two-weeks)

 11-Feb 6 K Simple CPU FSM Lab 2: (IN-CLASS) FSM Handout

4 7 K CPU Performance & Pipelines

 18-Feb H(out) Winter Break

HW2: FSMs,
Memory, CPU,
Performance, MIPS Proj 1: MIPS 1 Handout

 8 K H(out) Pipelined MIPS
and pipelined
MIPS

5 25-Feb 9 K Pipeline Hazards
C for Java
Programmers Proj 1: Design Doc Due

 10 K
Control Hazards & ISA
Variations

6 4-Mar 11 K RISC & CISC & Prelim 1 Review Prelim1 C lecture 2 C lecture 2

 12 H Calling Conventions

7 11-Mar 13 H Calling Conventions

HW3: Calling
Conventions,
RISC, CISC MIPS 2 Proj 2: MIPS 2 Handout

 14 H Calling Conventions

Linkers & and
more calling
conventions

8 18-Mar 15 H Linkers Intro to UNIX/Linux Proj 2: Design Doc Due

 16 K Caches 1 ssh, gcc, How to tunnel

9 25-Mar 17 K Caches 2 C lecture 3 C lecture 3

 18 K Caches 3

 1-Apr H(out) Spring Break

 H(out) Spring Break

10 8-Apr 19 H Virtual Memory 1 Stack Smashing Lab 3: Buffer Overflows handout

 20 H Virtual Memory 2

11 15-Apr 21 H Traps
HW4: Virtual
memory, Caches, Caches Proj 3: Caches Handout

 22 K
Multicore Architectures &
GPUs

Traps, Multicore,
Synchronization

12 22-Apr 23 K Synchronization Virtual Memory Lab 4: (IN-CLASS) Virtual Memory

 24 K Synchronization 2

13 29-Apr 25 K|H GPUs & Prelim 2 Review Synchronization Proj 4: Multicore/NW Handout

 26 H I/O Prelim 2

14 6-May 27 K&H Future Directions Proj 4: Design Doc Due

 13-May Proj 4 Due

 20-May

Lab (50% approx.)
• 5-6 Individual Labs

– 2 out-of-class labs (5-10%)
– 3-4 in-class labs (5-7.5%)

• 4 Group Projects (30-35%)
• Participation/Quizzes in lab (2.5%)

Lecture (50% approx.)
• 2 Prelims (35%)

– Dates: March 4, May 1

• Homework (10%)
• Participation/Quizzes in lecture (5%)

Regrade policy
• Submit written request to lead TA,
 and lead TA will pick a different grader
• Submit another written request,
 lead TA will regrade directly
• Submit yet another written request for professor to

regrade

Late Policy
• Each person has a total of four “slip days”
• Max of two slip days for any individual assignment
• For projects, slip days are deducted from all partners
• 25% deducted per day late after slip days are exhausted

iClicker: Bring to every Lecture

Put all devices into Airplane Mode

Fig. 1 Histogram of 270 physic student scores for the two sections:

Experiment w/ quizzes and active learning. Control without.

L Deslauriers et al. Science 2011;332:862-864

Published by AAAS

Demo: What year are you in school?

a) Freshman

b) Sophomore

c) Junior

d) Senior

e) Other

Also, activity handouts will be available before class

 In front of doors before you walk in

http://www.cs.cornell.edu/courses/cs3410/2014sp
• Office Hours / Consulting Hours
• Lecture slides, schedule, and Logisim
• CSUG lab access (esp. second half of course)

Lab Sections (start next week)
 T 2:55 – 4:10pm Carpenter Hall 104 (Blue Room)
 W 8:40—9:55am Carpenter Hall 104 (Blue Room)
 W 11:40am – 12:55pm Carpenter Hall 104 (BlueRoom)
 W 3:35 – 4:50pm Carpenter Hall 104 (Blue Room)
 W 7:30—8:45pm Carpenter Hall 235 (Red Room)
 R 8:40 – 9:55pm Carpenter Hall 104 (Blue Room)
 R 11:40 – 12:55pm Carpenter Hall 104 (Blue Room)
 R 2:55 – 4:10pm Carpenter Hall 104 (Blue Room)
 F 8:40 – 9:55am Carpenter Hall 104 (Blue Room)
 F 11:40am – 12:55pm Upson B7
 F 2:55 – 4:10pm Carpenter Hall 104 (Blue Room)

• Labs are separate than lecture and homework
• Bring laptop to Labs
• Next week: intro to logisim and building an adder

http://www.cs.cornell.edu/courses/cs3410/2014sp
• Office Hours / Consulting Hours
• Lecture slides, schedule, and Logisim
• CSUG lab access (esp. second half of course)

Course Virtual Machine (VM)

• Identical to CSUG Linux machines
• Download and use for labs and projects
• https://confluence.cornell.edu/display/coecis/CSUG+Lab+VM+Information

Email
• cs3410-staff-l@cs.cornell.edu
• The email alias goes to me and the TAs, not to whole class

Assignments

• CMS: http://cms.csuglab.cornell.edu

Newsgroup

• http://www.piazza.com/cornell/spring2014/cs3410
• For students

iClicker
• http://atcsupport.cit.cornell.edu/pollsrvc/

Lab Sections start next week
• Intro to logisim and building an adder

Labs Assignments
• Individual

• One week to finish (usually Monday to Monday)

Projects
• two-person teams

• Find partner in same section

Homeworks
• One before each prelim

• Will be released a few weeks ahead of time

• Finish question after covered in lecture

All submitted work must be your own
• OK to study together, but do not share soln’s
• Cite your sources

Project groups submit joint work
• Same rules apply to projects at the group level
• Cannot use of someone else’s soln

Closed-book exams, no calculators

• Stressed? Tempted? Lost?

• Come see us before due date!

Plagiarism in any form will not be tolerated

Functionality and Performance

To be better Computer Scientists and Engineers
• Abstraction: simplifying complexity

• How is a computer system organized? How do I build it?

• How do I program it? How do I change it?

• How does its design/organization effect performance?

Computer System = ?
Input +
Output +
Memory +
Datapath +
Control

CPU

Registers

Network Video

bus

Memory

bus

Disk

USB

Audio

Keyboard Mouse

Serial

int x = 10;
x = 2 * x + 15; C

compiler

addi r5, r0, 10
muli r5, r5, 2
addi r5, r5, 15

MIPS
assembly
language

00100000000001010000000000001010
00000000000001010010100001000000
00100000101001010000000000001111

MIPS
machine
language

assembler

r0 = 0

r5 = r0 + 10
r5 = r5 * 2
r5 = r15 + 15

op = addi r0 r5 10

op = addi r5 r5 15

ISA

• abstract interface between hardware and the
lowest level software

• user portion of the instruction set plus the
operating system interfaces used by application
programmers

A processor executes instructions
• Processor has some internal state in storage

elements (registers)

A memory holds instructions and data
• von Neumann architecture: combined inst and

data

A bus connects the two

regs
bus

processor memory

01010000

10010100

…
addr, data,

r/w

memory

 inst

32

pc

2

00

new pc

calculation

register file

control

5 5 5

alu

00: addi r5, r0, 10
04: muli r5, r5, 2
08: addi r5, r5, 15

r0

r5

10

0 10

AMD Barcelona: 4 processor cores

Figure from Patterson & Hennesssy, Computer Organization and Design, 4th Edition

Instruction Categories

• Load/Store

• Computational

• Jump and Branch

• Floating Point

– coprocessor

• Memory Management

R0 - R31

PC

HI

LO

OP

OP

OP

rs rt rd sa funct

rs rt immediate

jump target

Registers

I/O system Instr. Set Proc.

Compiler

Operating
System

Application

Digital Design

Circuit Design

Instruction Set
 Architecture

Firmware

Memory

system

Datapath & Control

Everything these days!

• Phones, cars, televisions, games, computers,…

53

Berkeley mote

NVidia GPU

Xilinx FPGA m
ill

io
n

s

0

200

400

600

800

1000

1200

1997 1999 2001 2003 2005 2007

110

295
405

502

785

93 114 135 136
202 265
189 200

Cell Phones

PCs

TVs

Cell Phone

Cloud
Computing

Cars

I/O system Instr. Set Proc.

Compiler

Operating
System

Application

Digital Design

Circuit Design

Instruction Set
 Architecture

Firmware

Memory

system

Datapath & Control

Why take this course?

 Basic knowledge needed for all other areas of CS:

operating systems, compilers, ...

 Levels are not independent

hardware design ↔ software design ↔ performance

 Crossing boundaries is hard but important

device drivers

 Good design techniques

abstraction, layering, pipelining, parallel vs. serial, ...

 Understand where the world is going

