Intermediate Pointers & Basic Structures



Review

o Pointers
o Referencing/Dereferencing
o free

realloc

structs
ArrayList



Review: What are Pointers?

e A pointer is an address on either the stack or heap.
e EX: “double *” should address a double in memory.

e For the pointer to contain data, some other function

must create the data it will point to.

e This is typically a call to malloc.



Getting Pointer/Reference

e To get pointer to something, use ‘&
e ‘& allows to pass items by reference
e To dereference or get item pointed to use ™

e " |s the opposite of ‘&’



Pass by Copy

Pass by copy: void main(){
void plus(int num){ int num = 3;
num++: plus(num);
) printf("%d\n”, num);
}

What does main print?



Pass by Reference

Pass by reference: void main(){
void plus(int *num){ iInt num = 3;
(*num)++; plus(&num);
) printf("%d\n”, num);
h

What does main print now?



Void * and realloc

“void *" may point to arbitrary types (i.e. int*, char*, etc.)
Can be casted to appropriate types

realloc increases the size of memory allotted to pointer
Preserves data pointed to by original pointer

Original pointer is NULL, if space is found elsewhere



Realloc and Equivalent

ptr = malloc(2); ptr = malloc(2);

ptr = realloc(ptr, 1000); ptr2 = malloc(1000);
memcpy(ptr2, ptr, 2);

Why not: free(ptr);

ptr = malloc(2); ptr = ptr2;

realloc(ptr, 1000); otr2 = NULL:




e Personalized types, somewhat like classes

e May contain items of choice

e Often the basis of (data) structures



typedef struct arraylist {
int *buffer;
int buffersize;:
int length;

} arraylist;




Editing Struct Fields

e You may declare structs on the stack

e You may access/edit fields of struct using ‘.’

e Think about why this works (Hint: pointers)



Editing Struct Fields

arraylist a;
a.buffer = NULL;
a.buffer _size = 0;
a.length = 0;




Editing Struct Fields

e You may declare structs on the heap

e Now you access/edit fields using *->’

e This syntax is more helpful visually



Editing Struct Fields

arraylist *a = (arraylist *)malloc(sizeof(arraylist));
a->buffer = NULL,

a->buffer_size = 0;

a->length = 0;




Memory Management

e You must free what you malloc (heap)

e Stack manages itself
arraylist *a = (arraylist *)malloc(sizeof(arraylist));

free(a); //lyaaaaaaaaay



Memory Management

e Do not free what you did not malloc!!!
e Do not free address consecutively!!!

int num = 3; int *num = malloc(4)

free(&num); // :,0 free(num); /lyaaaayyy
free(num); //staaahp



Memory Takeaways

e Only free what has been malloc’d
e Only free malloc’d memory once

e For more on stack vs. heap:

http://aribblelab.org/CBootcamp/7 Memory Stack vs Heap.html#sec-4



http://gribblelab.org/CBootcamp/7_Memory_Stack_vs_Heap.html#sec-4

Connect Thoughts

e Begin the lab exercise

e \Where/\When might realloc be useful?

e \Where/When might free be useful?



