What does the Future Hold?

Hakim Weatherspoon

CS 3410, Spring 2012
Computer Science
Cornell University

Announcements

Prelim3 Results

- Mean 62.2 ± 15.5 (median 64.5), Max 97
- Pickup in Homework Passback Room

Announcements

How to improve your grade?

Submit a course evaluation and drop lowest homework score

- To receive credit, Submit before Monday, May $7^{\text {th }}$

Announceme

FlameWar Pizza Party was great!

- Winner: Team MakeTotalDestroy

Kenny Deakins and Luis Ruigomez

Announcements

Final Project
Design Doc sign-up via CMS
sign up Sunday, Monday, or Tuesday
May $6^{\text {th }}, 7^{\text {th }}$, or $8^{\text {th }}$
Demo Sign-Up via CMS.
sign up Tuesday, May 15th
or Wednesday, May $16^{\text {th }}$
CMS submission due:

- Due 6:30pm Wednesday, May 16th

Big Picture about the Future

Big Picture

How a processor works? How a computer is organized?

What's next?

More of Moore

Moore's Law

Moore's Law introduced in 1965

- Number of transistors that can be integrated on a single die would double every 18 to 24 months (i.e., grow exponentially with time).
Amazingly visionary
- 2300 transistors, 1 MHz clock (Intel 4004) - 1971
- 16 Million transistors (Ultra Sparc III)
- 42 Million transistors, 2 GHz clock (Intel Xeon) - 2001
- 55 Million transistors, $3 \mathrm{GHz}, 130 \mathrm{~nm}$ technology, 250 mm 2 die (Intel Pentium 4) - 2004
- 290+ Million transistors, 3 GHz (Intel Core 2 Duo) - 2007
- 731 Million transisters, 2-3Ghz (Intel Nehalem) - 2009
- 1.17 Billion transistors, 2-3Ghz (Intel Westmere) - 2011 9

Power Limits

What to do with all these transistors?

Multi-core

Multi-core

The first transistor

- on a workbench at

AT\&T Bell Labs in 1947

- Bardeen, Brattain, and Shockley

An Intel Westmere
1.17 billion transistors

240 square millimeters
Six processing cores

What to do with all these transistors?

Many-core
and Graphical Processing units

Faster than Moore's Law One-pixel polygons (~10IV polygons @ 30Hz)

AMDs Hybrid CPU/GPU

 AMD's Answer: Hybrid CPU/GPU

Cell Broadband Engine Processor

IBM/Sony/Toshiba

Sony Playstation 3

PPE

SPEs (synergestic)

Parallelism

Must exploit parallelism for performance

- Lots of parallelism in graphics applications
- Lots of parallelism in scientific computing

SIMD: single instruction, multiple data

- Perform same operation in parallel on many data items
- Data parallelism

MIMD: multiple instruction, multiple data

- Run separate programs in parallel (on different data)
- Task parallelism

NVidia Tesla Architecture

Why are GPUs so fast?

FIGURE A.3.1 Direct3D 10 graphics pipeline. Each logical pipeline stage maps to GPU hardware or to a GPU processor.
Programmable shader stages are blue, fixed-function blocks are white, and memory objects are grey. Each stage processes a vertex, geometric primitive, or pixel in a streaming dataflow fashion. Copyright © 2009 Elsevier, Inc. All rights reserved.

Pipelined and parallel

Very, very parallel: 128 to 1000 cores

FIGURE A.2.5 Basic unified GPU architecture. Example GPU with 112 streaming processor (SP) cores organized in 14 streaming multiprocessors (SMs); the cores are highly multithreaded. It has the basic Tesla architecture of an NVIDIA GeForce 8800. The processors connect with four 64-bit-wide DRAM partitions via an interconnection network. Each SM has eight SP cores, two special function units (SFUs), instruction and constant caches, a multithreaded instruction unit, and a shared memory. Copyright © 2009 Elsevier, Inc. All rights reserved.

General computing with GPUs

Can we use these for general computation?
Scientific Computing

- MATLAB codes

Convex hulls
Molecular Dynamics
Etc.

NVIDIA's answer:
Compute Unified Device Architecture (CUDA)

- MATLAB/Fortran/etc. \rightarrow "C for CUDA" \rightarrow GPU Codes

What to do with all these transistors?

Cloud Computing

Cloud Computing

Datacenters are becoming a commodity
Order online and have it delivered

- Datacenter in a box: already set up with commodity hardware \& software (Intel, Linux, petabyte of storage)
- Plug data, power \& cooling and turn on - typically connected via optical fiber

Cloud Computing = Network of Datacenters

Cloud Computing

Enable datacenters to coordinate over vast

 distances- Optimize availability, disaster tolerance, energy
- Without sacrificing performance
- "cloud computing"

Drive underlying technological innovations.

Cloud Computing

The promise of the Cloud

- A computer utility; a commodity
- Catalyst for technology economy
- Revolutionizing for health care, financial systems, scientific research, and society

However, cloud platforms today

- Entail significant risk: vendor lock-in vs control
- Entail inefficient processes: energy vs performance
- Entail poor communication: fiber optics vs COTS endpoints

Example: Energy and Performance

Why don't we save more energy in the cloud?

No one deletes data anymore!

- Huge amounts of seldom-accessed data

Data deluge

- Google (YouTube, Picasa, Gmail, Docs), Facebook, Flickr
- 100 GB per second is faster than hard disk capacity growth!
- Max amount of data accessible at one time << Total data

New scalable approach needed to store this data

- Energy footprint proportional to number of HDDs is not sustainable

What to do with all these transistors?

Embedded Processors

Where is the Market?

Where is the Market?

Where is the Market?

Where is the Market?

Where to?

Security?

Cryptography and security...

 TPM 1.2IBM 4758
Secure Cryptoprocessor

Security?

Smart Cards...

carte d'assurance maladie

 128888808808888
 4 NNNNNMNNNNN
 в8вв日вв8в

What to do with all these transistors?

You could save the world one day?

Alan Turing's Bombe Used to crack Germany's enigma machine

ENIAC - 1946
First general purpose electronic computer. Designed to calculate ballistic trajectories

Smart Dust
\& Sensor Networks

Survey Questions

Are you a better computer scientist and software engineering knowing "the low-level stuff"?

How much of computer architecture do software engineers actually have to deal with?

What are the most important aspects of computer architecture that a software engineer should keep in mind while programming?

These days, programs run on hardware...
... more than ever before

Google Chrome
\rightarrow Operating Systems
\rightarrow Multi-Core \& Hyper-Threading
\rightarrow Datapath Pipelines, Caches, MMUs, I/O \& DMA
\rightarrow Busses, Logic, \& State machines
\rightarrow Gates
\rightarrow Transistors
\rightarrow Silicon
\rightarrow Electrons

Your job as a computer scientist will require knowledge the computer
Research/University

Cornell University

Faculty of Computing and Information Science
Industry

Government

Where to?

CS 3110: Better concurrent programming
CS 4410/4411: The Operating System!
CS 4420/ECE 4750: Computer Architecture
CS 4450: Networking
CS 4620: Graphics
ES-4821: Quantum Computing
MEng
5412-Cloud Computing, 5414—Distr Computing,
5430—Systems Secuirty,
5300-Arch of Larg scale Info Systems
And many more...

Thank you!

If you want to make an apple pie from scratch, you must first create the universe.

- Carl Sagan

