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Administrivia 

Project3 available now 

• Design Doc due next week, Monday, April 16th 

• Schedule a Design Doc review Mtg now for next week 

• Whole project due Monday, April 23rd 

• Competition/Games night Friday, April 27th, 5-7pm 

 

Prelim3 is in two and a half weeks, Thursday, April 26th 

• Time and Location: 7:30pm in Olin Hall room 155 

• Old prelims are online in CMS 
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Summary of Caches/TLBs/VM 
Caches, Virtual Memory, & TLBs: answer three questions 

Where can block be placed? 

• Direct, n-way, fully associative 

 

 

What block is replaced on miss? 

• LRU, Random, LFU, …  

How are writes handled? 

• No-write (w/ or w/o automatic invalidation) 

• Write-back (fast, block at time) 

• Write-through (simple, reason about consistency) 
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Summary of Caches/TLBs/VM 
Caches, Virtual Memory, & TLBs: answer three questions 

Where can block be placed? 

• Caches: direct/n-way/fully associative (fa) 

• VM: fa, but with a table of contents to eliminate searches 

• TLB: fa 

What block is replaced on miss? 

• varied 

How are writes handled? 

• Caches: usually write-back, or maybe write-through, or 
maybe no-write w/ invalidation 

• VM: write-back  

• TLB: usually no-write 
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Summary of Cache Design Parameters 

L1 TLB Paged 

Memory 

Size 

(blocks) 

1/4k to 

4k 

64 to 4k 16k to 1M 

Size 

(kB) 

16 to 64 2 to 16 1M to 4G 

Block 

size (B) 

16-64 4-32 4k to 64k 

Miss 

rates 

2%-5% 0.01% to 2% 10-4 to 10-5% 

Miss 

penalty 

10-25 100-1000 10M-100M 
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Hardware/Software Boundary 

Virtual to physical address translation is 
assisted by hardware 

Need both hardware and software support 

Software 

• Page table storage, fault detection and updating 

– Page faults result in interrupts that are then handled by 
the OS 

– Must update appropriately Dirty and Reference bits 
(e.g., ~LRU) in the Page Tables 
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Hardware/Software Boundary 

OS has to keep TLB valid 

Keep TLB valid on context switch 
• Flush TLB when new process runs (x86) 

• Store process id (MIPs) 
 

Also, store pids with cache to avoid flushing cache 
on context switches 

 

Hardware support 
• Page table register 

• Process id register 



8 

Hardware/Software Boundary 

Hardware support for exceptions 

• Exception program counter 

• Cause register 

• Special instructions to load TLB  

– Only do-able by kernel 

 

Precise and imprecise exceptions 

• In pipelined architecture 

– Have to correctly identify PC of exception 

– MIPS and modern processors support this 
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Hardware/Software Boundary 

Precise exceptions: Hardware guarantees 

• Previous instructions complete 

• Later instructions are flushed 

• EPC and cause register are set 

• Jump to prearranged address in OS 

• When you come back, restart instruction 

 

• Disable exceptions while responding to one 

– Otherwise can overwrite EPC and cause 
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Attempt #2 is broken 

Drawbacks: 

• Any program can muck with TLB, PageTables, OS code… 

• A program can intercept exceptions of other programs 

• OS can crash if program messes up $sp, $fp, $gp, … 

 

Wrong: Make these instructions and registers 
available only to “OS Code” 

• “OS Code” == any code above 0x80000000 

• Program can still JAL into middle of OS functions 

• Program can still muck with OS memory, pagetables, … 
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Privileged Mode 

aka Kernel Mode 
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Operating System 
Some things not available to untrusted programs: 

• Exception registers, HALT instruction, MMU 
instructions, talk to I/O devices, OS memory, ... 

Need trusted mediator: Operating System (OS) 

• Safe control transfer 

• Data isolation 

P1 P2 P3 P4 

VM filesystem net 

driver driver 

disk eth MMU 
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Privilege Mode 
CPU Mode Bit / Privilege Level Status Register 

Mode 0 = untrusted = user domain 

• “Privileged” instructions and registers are disabled by CPU 

Mode 1 = trusted = kernel domain 

• All instructions and registers are enabled 

Boot sequence:  

• load first sector of disk (containing OS code) to well known 
address in memory 

• Mode  1; PC  well known address 

OS takes over… 

• initialize devices, MMU, timers, etc. 

• loads programs from disk, sets up pagetables, etc. 

• Mode  0; PC  program entry point 
(note: x86 has 4 levels x 3 dimensions, but only virtual machines uses any  the middle) 
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Terminology 

Trap: Any kind of a control transfer to the OS 

 

Syscall: Synchronous (planned), program-to-kernel transfer 

• SYSCALL instruction in MIPS (various on x86) 

 

Exception: Synchronous, program-to-kernel transfer 

• exceptional events: div by zero, page fault, page protection err, … 

 

Interrupt: Aysnchronous, device-initiated transfer 

• e.g. Network packet arrived, keyboard event, timer ticks 

* real mechanisms, but nobody agrees on these terms 
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Sample System Calls 

System call examples: 

putc(): Print character to screen 

• Need to multiplex screen between competing programs 

send(): Send a packet on the network 

• Need to manipulate the internals of a device  

sbrk(): Allocate a page 

• Needs to update page tables & MMU 

sleep(): put current prog to sleep, wake other 

• Need to update page table base register 
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System Calls 

System call: Not just a function call 
• Don’t let program jump just anywhere in OS code 

• OS can’t trust program’s registers (sp, fp, gp, etc.) 

 

SYSCALL instruction: safe transfer of control to OS 
• Mode  0; Cause  syscall; PC  exception vector 

 

MIPS system call convention: 
• user program mostly normal (save temps, save ra, …) 

• but: $v0 = system call number,                                   
which specifies the operation the application is 
requesting 
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Invoking System Calls 

int getc() { 

  asm("addiu $2, $0, 4"); 

  asm("syscall"); 

} 

 

char *gets(char *buf) { 

  while (...) { 

    buf[i] = getc(); 

  } 

} 
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Libraries and Wrappers 

Compilers do not emit SYSCALL instructions 
• Compiler doesn’t know OS interface 

Libraries implement standard API from system API 

libc (standard C library): 
• getc()  syscall 

• sbrk()  syscall 

• write()  syscall 

• gets()  getc() 

• printf()  write() 

• malloc()  sbrk() 

• … 
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Where does OS live? 

In its own address space? 
• But then syscall would have to switch to a different 

address space  

• Also harder to deal with syscall arguments passed as 
pointers 

 

So in the same address space as process 
• Use protection bits to prevent user code from writing 

kernel 

• Higher part of VM, lower part of physical memory 
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Full System Layout 

Typically all kernel text, most data 
• At same VA in every address space 

• Map kernel in contiguous physical 
memory when boot loader puts kernel 
into physical memory 

 

The OS is omnipresent and steps in 
where necessary to aid application 
execution 

• Typically resides in high memory 

 

When an application needs to perform 
a privileged operation, it needs to 
invoke the OS 

OS Text 

Stack 

Heap 

Data 

Text 

OS Data 

OS Heap 

OS Stack 

0x000…0 

0x7ff…f 

0xfff…f 

0x800…0 

Memory 
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SYSCALL instruction 

SYSCALL instruction does an atomic jump to a 
controlled location 
• Switches the sp to the kernel stack 

• Saves the old (user) SP value 
• Saves the old (user) PC value (= return address) 

• Saves the old privilege mode 
• Sets the new privilege mode to 1 
• Sets the new PC to the kernel syscall handler 
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SYSCALL instruction 

Kernel system call handler carries out the desired 
system call 
• Saves callee-save registers 

• Examines the syscall number 
• Checks arguments for sanity 

• Performs operation 
• Stores result in v0 
• Restores callee-save registers 
• Performs a “return from syscall” instruction, which 

restores the privilege mode, SP and PC 
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Interrupts 
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Recap: Traps 

 Map kernel into every process using supervisor PTEs 

 Switch to kernel mode on trap, user mode on return 

 

Syscall: Synchronous, program-to-kernel transfer 

• user does caller-saves, invokes kernel via syscall 

• kernel handles request, puts result in v0, and returns 

Exception: Synchronous, program-to-kernel transfer 

• user div/load/store/… faults, CPU invokes kernel 

• kernel saves everything, handles fault, restores, and returns 

Interrupt: Aysnchronous, device-initiated transfer 

• e.g. Network packet arrived, keyboard event, timer ticks 

• kernel saves everything, handles event, restores, and returns 
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Exceptions 

System calls are control transfers to the OS, 
performed under the control of the user program 

 
Sometimes, need to transfer control to the OS at a 

time when the user program least expects it 
• Division by zero, 
• Alert from power supply that electricity is going out 
• Alert from network device that a packet just arrived 
• Clock notifying the processor that clock just ticked 

 

Some of these causes for interruption of execution 
have nothing to do with the user application 

Need a (slightly) different mechanism, that allows 
resuming the user application 
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Interrupts & Exceptions 

On an interrupt or exception 
• Switches the sp to the kernel stack 

• Saves the old (user) SP value 

• Saves the old (user) PC value 
• Saves the old privilege mode 
• Saves cause of the interrupt/privilege 
• Sets the new privilege mode to 1 
• Sets the new PC to the kernel interrupt/exception 

handler 
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Interrupts & Exceptions 

Kernel interrupt/exception handler handles the 
event 
• Saves all registers 
• Examines the cause 
• Performs operation required 

• Restores all registers 
• Performs a “return from interrupt” instruction, which 

restores the privilege mode, SP and PC 
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Example: Clock Interrupt 

Example: Clock Interrupt* 

• Every N cycles, CPU causes exception with Cause = CLOCK_TICK 

• OS can select N to get e.g. 1000 TICKs per second 

.ktext 0x80000180 

# (step 1) save *everything* but $k0, $k1 to 0xB0000000 

# (step 2) set up a usable OS context 

# (step 3) examine Cause register, take action 

if (Cause == PAGE_FAULT) handle_pfault(BadVaddr) 

else if (Cause == SYSCALL) dispatch_syscall($v0) 

else if (Cause == CLOCK_TICK) schedule() 

# (step 4) restore registers and return to where program left off 

 

 
* not the CPU clock, but a programmable timer clock 
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Scheduler 

struct regs context[];  
int ptbr[]; 
schedule() { 
 i = current_process; 
 j = pick_some_process(); 
 if (i != j) { 
  current_process = j; 
  memcpy(context[i], 0xB0000000); 
  memcpy(0xB0000000, context[j]); 
  asm(“mtc0 Context, ptbr[j]”); 
  } 
} 
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Syscall vs. Interrupt 

Syscall vs. Exceptions vs. Interrupts 

 

Same mechanisms, but… 

 

 Syscall saves and restores much less state 

 

 Others save and restore full processor state 

 

 Interrupt arrival is unrelated to user code 
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Summary 

Trap 
• Any kind of a control transfer to the OS 

Syscall 
• Synchronous, program-initiated control transfer from 

user to the OS to obtain service from the OS 

• e.g. SYSCALL 

Exception 
• Synchronous, program-initiated control transfer from 

user to the OS in response to an exceptional event 
• e.g. Divide by zero, TLB miss, Page fault 

Interrupt 
• Asynchronous, device-initiated control transfer from 

user to the OS 
• e.g. Network packet, I/O complete 


