
Traps, Exceptions, System

Calls, & Privileged Mode

Hakim Weatherspoon
CS 3410, Spring 2012

Computer Science
Cornell University

P&H Chapter 4.9, pages 509–515, appendix B.7

2

Administrivia

Project3 available now

• Design Doc due next week, Monday, April 16th

• Schedule a Design Doc review Mtg now for next week

• Whole project due Monday, April 23rd

• Competition/Games night Friday, April 27th, 5-7pm

Prelim3 is in two and a half weeks, Thursday, April 26th

• Time and Location: 7:30pm in Olin Hall room 155

• Old prelims are online in CMS

3

Summary of Caches/TLBs/VM
Caches, Virtual Memory, & TLBs: answer three questions

Where can block be placed?

• Direct, n-way, fully associative

What block is replaced on miss?

• LRU, Random, LFU, …

How are writes handled?

• No-write (w/ or w/o automatic invalidation)

• Write-back (fast, block at time)

• Write-through (simple, reason about consistency)

4

Summary of Caches/TLBs/VM
Caches, Virtual Memory, & TLBs: answer three questions

Where can block be placed?

• Caches: direct/n-way/fully associative (fa)

• VM: fa, but with a table of contents to eliminate searches

• TLB: fa

What block is replaced on miss?

• varied

How are writes handled?

• Caches: usually write-back, or maybe write-through, or
maybe no-write w/ invalidation

• VM: write-back

• TLB: usually no-write

5

Summary of Cache Design Parameters

L1 TLB Paged

Memory

Size

(blocks)

1/4k to

4k

64 to 4k 16k to 1M

Size

(kB)

16 to 64 2 to 16 1M to 4G

Block

size (B)

16-64 4-32 4k to 64k

Miss

rates

2%-5% 0.01% to 2% 10-4 to 10-5%

Miss

penalty

10-25 100-1000 10M-100M

6

Hardware/Software Boundary

Virtual to physical address translation is
assisted by hardware

Need both hardware and software support

Software

• Page table storage, fault detection and updating

– Page faults result in interrupts that are then handled by
the OS

– Must update appropriately Dirty and Reference bits
(e.g., ~LRU) in the Page Tables

7

Hardware/Software Boundary

OS has to keep TLB valid

Keep TLB valid on context switch
• Flush TLB when new process runs (x86)

• Store process id (MIPs)

Also, store pids with cache to avoid flushing cache
on context switches

Hardware support
• Page table register

• Process id register

8

Hardware/Software Boundary

Hardware support for exceptions

• Exception program counter

• Cause register

• Special instructions to load TLB

– Only do-able by kernel

Precise and imprecise exceptions

• In pipelined architecture

– Have to correctly identify PC of exception

– MIPS and modern processors support this

9

Hardware/Software Boundary

Precise exceptions: Hardware guarantees

• Previous instructions complete

• Later instructions are flushed

• EPC and cause register are set

• Jump to prearranged address in OS

• When you come back, restart instruction

• Disable exceptions while responding to one

– Otherwise can overwrite EPC and cause

10

Attempt #2 is broken

Drawbacks:

• Any program can muck with TLB, PageTables, OS code…

• A program can intercept exceptions of other programs

• OS can crash if program messes up $sp, $fp, $gp, …

Wrong: Make these instructions and registers
available only to “OS Code”

• “OS Code” == any code above 0x80000000

• Program can still JAL into middle of OS functions

• Program can still muck with OS memory, pagetables, …

11

Privileged Mode

aka Kernel Mode

12

Operating System
Some things not available to untrusted programs:

• Exception registers, HALT instruction, MMU
instructions, talk to I/O devices, OS memory, ...

Need trusted mediator: Operating System (OS)

• Safe control transfer

• Data isolation

P1 P2 P3 P4

VM filesystem net

driver driver

disk eth MMU

13

Privilege Mode
CPU Mode Bit / Privilege Level Status Register

Mode 0 = untrusted = user domain

• “Privileged” instructions and registers are disabled by CPU

Mode 1 = trusted = kernel domain

• All instructions and registers are enabled

Boot sequence:

• load first sector of disk (containing OS code) to well known
address in memory

• Mode  1; PC  well known address

OS takes over…

• initialize devices, MMU, timers, etc.

• loads programs from disk, sets up pagetables, etc.

• Mode  0; PC  program entry point
(note: x86 has 4 levels x 3 dimensions, but only virtual machines uses any the middle)

14

Terminology

Trap: Any kind of a control transfer to the OS

Syscall: Synchronous (planned), program-to-kernel transfer

• SYSCALL instruction in MIPS (various on x86)

Exception: Synchronous, program-to-kernel transfer

• exceptional events: div by zero, page fault, page protection err, …

Interrupt: Aysnchronous, device-initiated transfer

• e.g. Network packet arrived, keyboard event, timer ticks

* real mechanisms, but nobody agrees on these terms

15

Sample System Calls

System call examples:

putc(): Print character to screen

• Need to multiplex screen between competing programs

send(): Send a packet on the network

• Need to manipulate the internals of a device

sbrk(): Allocate a page

• Needs to update page tables & MMU

sleep(): put current prog to sleep, wake other

• Need to update page table base register

16

System Calls

System call: Not just a function call
• Don’t let program jump just anywhere in OS code

• OS can’t trust program’s registers (sp, fp, gp, etc.)

SYSCALL instruction: safe transfer of control to OS
• Mode  0; Cause  syscall; PC  exception vector

MIPS system call convention:
• user program mostly normal (save temps, save ra, …)

• but: $v0 = system call number,
which specifies the operation the application is
requesting

17

Invoking System Calls

int getc() {

 asm("addiu $2, $0, 4");

 asm("syscall");

}

char *gets(char *buf) {

 while (...) {

 buf[i] = getc();

 }

}

18

Libraries and Wrappers

Compilers do not emit SYSCALL instructions
• Compiler doesn’t know OS interface

Libraries implement standard API from system API

libc (standard C library):
• getc()  syscall

• sbrk()  syscall

• write()  syscall

• gets()  getc()

• printf()  write()

• malloc()  sbrk()

• …

19

20

Where does OS live?

In its own address space?
• But then syscall would have to switch to a different

address space

• Also harder to deal with syscall arguments passed as
pointers

So in the same address space as process
• Use protection bits to prevent user code from writing

kernel

• Higher part of VM, lower part of physical memory

21

Full System Layout

Typically all kernel text, most data
• At same VA in every address space

• Map kernel in contiguous physical
memory when boot loader puts kernel
into physical memory

The OS is omnipresent and steps in
where necessary to aid application
execution

• Typically resides in high memory

When an application needs to perform
a privileged operation, it needs to
invoke the OS

OS Text

Stack

Heap

Data

Text

OS Data

OS Heap

OS Stack

0x000…0

0x7ff…f

0xfff…f

0x800…0

Memory

22

SYSCALL instruction

SYSCALL instruction does an atomic jump to a
controlled location
• Switches the sp to the kernel stack

• Saves the old (user) SP value
• Saves the old (user) PC value (= return address)

• Saves the old privilege mode
• Sets the new privilege mode to 1
• Sets the new PC to the kernel syscall handler

23

SYSCALL instruction

Kernel system call handler carries out the desired
system call
• Saves callee-save registers

• Examines the syscall number
• Checks arguments for sanity

• Performs operation
• Stores result in v0
• Restores callee-save registers
• Performs a “return from syscall” instruction, which

restores the privilege mode, SP and PC

24

Interrupts

25

Recap: Traps

 Map kernel into every process using supervisor PTEs

 Switch to kernel mode on trap, user mode on return

Syscall: Synchronous, program-to-kernel transfer

• user does caller-saves, invokes kernel via syscall

• kernel handles request, puts result in v0, and returns

Exception: Synchronous, program-to-kernel transfer

• user div/load/store/… faults, CPU invokes kernel

• kernel saves everything, handles fault, restores, and returns

Interrupt: Aysnchronous, device-initiated transfer

• e.g. Network packet arrived, keyboard event, timer ticks

• kernel saves everything, handles event, restores, and returns

26

Exceptions

System calls are control transfers to the OS,
performed under the control of the user program

Sometimes, need to transfer control to the OS at a

time when the user program least expects it
• Division by zero,
• Alert from power supply that electricity is going out
• Alert from network device that a packet just arrived
• Clock notifying the processor that clock just ticked

Some of these causes for interruption of execution
have nothing to do with the user application

Need a (slightly) different mechanism, that allows
resuming the user application

27

Interrupts & Exceptions

On an interrupt or exception
• Switches the sp to the kernel stack

• Saves the old (user) SP value

• Saves the old (user) PC value
• Saves the old privilege mode
• Saves cause of the interrupt/privilege
• Sets the new privilege mode to 1
• Sets the new PC to the kernel interrupt/exception

handler

28

Interrupts & Exceptions

Kernel interrupt/exception handler handles the
event
• Saves all registers
• Examines the cause
• Performs operation required

• Restores all registers
• Performs a “return from interrupt” instruction, which

restores the privilege mode, SP and PC

29

Example: Clock Interrupt

Example: Clock Interrupt*

• Every N cycles, CPU causes exception with Cause = CLOCK_TICK

• OS can select N to get e.g. 1000 TICKs per second

.ktext 0x80000180

(step 1) save *everything* but $k0, $k1 to 0xB0000000

(step 2) set up a usable OS context

(step 3) examine Cause register, take action

if (Cause == PAGE_FAULT) handle_pfault(BadVaddr)

else if (Cause == SYSCALL) dispatch_syscall($v0)

else if (Cause == CLOCK_TICK) schedule()

(step 4) restore registers and return to where program left off

* not the CPU clock, but a programmable timer clock

30

Scheduler

struct regs context[];
int ptbr[];
schedule() {
 i = current_process;
 j = pick_some_process();
 if (i != j) {
 current_process = j;
 memcpy(context[i], 0xB0000000);
 memcpy(0xB0000000, context[j]);
 asm(“mtc0 Context, ptbr[j]”);
 }
}

31

Syscall vs. Interrupt

Syscall vs. Exceptions vs. Interrupts

Same mechanisms, but…

 Syscall saves and restores much less state

 Others save and restore full processor state

 Interrupt arrival is unrelated to user code

32

Summary

Trap
• Any kind of a control transfer to the OS

Syscall
• Synchronous, program-initiated control transfer from

user to the OS to obtain service from the OS

• e.g. SYSCALL

Exception
• Synchronous, program-initiated control transfer from

user to the OS in response to an exceptional event
• e.g. Divide by zero, TLB miss, Page fault

Interrupt
• Asynchronous, device-initiated control transfer from

user to the OS
• e.g. Network packet, I/O complete

