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Administrivia
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Goals for Today
Cache Parameter Tradeoffs
Cache Conscious Programming

Writing to the Cache
* Write-through vs Write back



Cache Design Tradeoffs



Cache Design

Need to determine parameters:

Cache size

Block size (aka line size)

Number of ways of set-associativity (1, N, o)
Eviction policy

Number of levels of caching, parameters for each
Separate I-cache from D-cache, or Unified cache
Prefetching policies / instructions

Write policy



> dmidecode -t cache A Real Example

Cache Information Dual-core 3.16GHzZ Intel
Configuration: Enabled, Not Socketed, Level 1 .
Operational Mode: Write Back (purChaSEd N 2011)

Installed Size: 128 KB

Error Correction Type: None
Cache Information

Configuration: Enabled, Not Socketed, Level 2

Operational Mode: Varies With Memory Address

Installed Size: 6144 KB

Error Correction Type: Single-bit ECC
> c¢d /sys/devices/system/cpu/cpu@; grep cache/*/*
cache/index@/level:1
cache/index@/type:Data
cache/index@/ways of associativity:8
cache/index@/number_of sets:64
cache/index@/coherency line size:64
cache/index@/size:32K
cache/index1l/level:1
cache/indexl/type:Instruction
cache/indexl/ways _of associativity:8
cache/indexl/number_of sets:64
cache/indexl/coherency line size:64
cache/indexl/size:32K
cache/index2/level:2
cache/index2/type:Unified
cache/index2/shared cpu list:0-1
cache/index2/ways_of associativity:24
cache/index2/number_of sets:4096
cache/index2/coherency line size:64 6
cache/index2/size:6144K



A Real Example
Dual-core 3.16GHzZ Intel

Dual 32K L1 Instruction caches (purchased in 2009)
* 8-way set associative
* 64 sets
* 64 byte line size

Dual 32K L1 Data caches
* Same as above

Single 6M L2 Unified cache
e 24-way set associative (!!!)
* 4096 sets
* 64 byte line size

4GB Main memory

1TB Disk



Basic Cache Organization
Q: How to decide block size?
A: Try it and see

But: depends on cache size, workload,
associativity, ...

Experimental approach!



Experimental Results
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Tradeoffs
For a given total cache size,
larger block sizes mean....

 fewer lines

* so fewer tags (and smaller tags for associative caches)
* so less overhead

e and fewer cold misses (within-block “prefetching”)
But also...

» fewer blocks available (for scattered accesses!)
* so more conflicts

* and larger miss penalty (time to fetch block)
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Cache Conscious Programming
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Cache Conscious Programm

INg

// H =12, W = 10 1 111
int A[H][W];

21

EE
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23
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24

for(x=0; x < W; Xx++)

15

for(y=0; y < H; y++) -

sum += A[y][x]; 6 |16

26

17] ...

18

19

10

20

Every access is a cache miss!

(unless entire matrix can fit in cache)
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Cache Conscious Programming
[/ H =12, W =16 12345678-

int A[H][W]; EEUER

for(y=0; y < H; y++)

for(x=0; x < W; X++)

sum += A[y][x];

Block size =4 = 75% hit rate
Block size = 8 =2 87.5% hit rate
Block size = 16 = 93.75% hit rate
And you can easily prefetch to warm the cache.
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Writing with Caches
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Eviction

Which cache line should be evicted from the cache
to make room for a new line?
* Direct-mapped
— no choice, must evict line selected by index
* Associative caches
— random: select one of the lines at random
— round-robin: similar to random

— FIFO: replace oldest line
— LRU: replace line that has not been used in the longest time
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Cached Write Policies

Q: How to write data?

Clelely Cache
U i i Memory
? SRAM — DRAM
ata

If data is already in the cache...
No-Write
e writes invalidate the cache and go directly to memory

Write-Through

* writes go to main memory and cache

Write-Back

 CPU writes only to cache
e cache writes to main memory later (when block is evicted)



What about Stores?
Where should you write the result of a store?

* If that memory location is in the cache?
— Send it to the cache
— Should we also send it to memory right away?
(write-through policy)
— Wait until we kick the block out (write-back policy)
* Ifitis notin the cache?
— Allocate the line (put it in the cache)?
(write allocate policy)
— Write it directly to memory without allocation?
(no write allocate policy)
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Write Allocation Policies
Q: How to write data?

Clelely Cache
U i i Memory
? SRAM — DRAM
ata

If data is not in the cache...
Write-Allocate

 allocate a cache line for new data (and maybe write-through)
No-Write-Allocate

* ignore cache, just go to main memory



Handling Stores (Write-Through)

Using byte addresses in this example! Addr Bus = 5 bits

Processor

Assume write-allocate
policy

SB S1—>M[ 5

S0
s1
$2
S3

Cach
Fully Assocelative Cache
2 cache lines

2 word block
3 bit tag field

1 bit block offset field
V tag data

0

Misses: 0O

Hits: 0

0
1
2

Memory
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Write-Through (REF 1)

Processor

m) (B $1« M[ 1
LB $2 ¢« M[ 7
SB$2>M[ O
SB $1>M[ 5

SB S1—>M[ 5
SB $1 —» M[ 10

Cache

V tag data

0

S0

s1

$2

S3

Misses: 0O

Hits: 0

Memory

0
1
2
3

11 T
12
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Write-Through (REF 1)

Processor

m) (B $1« M[ 1
LB $2 ¢« M[ 7
SB$2>M[ O
SB $1>M[ 5

SB $1 > M[ 5

SB $1 — M[ 10

S0

s1

29

$2

S3

Cache

V tag data

11000 78

29

Iru |0

Misses: 1

Hits: 0

Memory

0
1
2
3
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Write-Through (REF 2)

Processor

LB $1 « M[

) 1B $2 « M|

1
7
SB $2 > M[ 0
SB $1 > M[ 5

SB S1—>M[ 5
SB $1 —» M[ 10

S0

S1 29

$2

S3

Cache

V tag data

11000 78

29

Iru |0

Misses: 1

Hits: 0

Memory

0
1
2
3
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Write-Through (REF 2)

Processor

LB $1 « M[
LB $2 « M[

S0
S1 29

$2 -
S3

Iru

Cache
V tag data
11000 78

29

Misses: 2

Hits: 0

Memory

0
1
2
3
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Write-Through (REF 3)

Processor Cache Memory
0
|
p
3

BS1<M 1]m V tag data

LB $2M[ 7 Im|Iru [1Tooo] 78

mm) SB $2 > M[ 0 ] 59

SB S15>M[ 5 ]

LB $2 < M[ 10 ] 11011

SB $1>M[ 5 ]

]

SB $1 —» M[ 10

S0
S1 29

$2 -
S3

Misses: 2

Hits: 0
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Write-Through (REF 3)

Processor

1
LB $2¢<M[ 7
mm) SB $2>M[ O
SB $1>M[ 5

SB $1 > M[ 5
SB $1 — M[ 10

S0

S1 29
S2
S3

Iru

Cache

V tag data

11000 173

29

Misses: 2

Hits: 1

Memory
Og 173
rd 120

el 123

4 T
q 150
" 162

7 IEEEE
8

9

10 IREEINN
11 T
12
13

14 IETO
15 T
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Write-Through (REF 4)

Processor Cache Memory
0
1
2
3

BS1<M 1]m V tag data

LB $2¢M[ 7 ] m 1|oo0| 173

L 2

= LB $2 < M[ 10 ] Iru T4 011-
SB S1>M[ 5 ]
]

S0
S1 29

$2 -
S3

Misses: 2

Hits: 1

26



Write-Through (REF 4)

Processor Cache Memory
0
|
d 120
v : 3 123
IBS1e<M[ 1 ]m W RREE
1B$2<M[ 7 Im|Iru [1Tooo] 173
SB$2>M[ 0 ] H o
mm) SB $15>M[ 5 ]y
LB $2 < M[ 10 ]
SB $1 > M| ]
]

S0

s1
$2
S3
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Write-Through (REF 5)

Processor

SB $1 — M[
mm) LB $2 < M[ 10

SB $1—>M[ 5

SB $1 — M[ 10

S0
S1 29

Sz-

S3

Cache
V tag data
Iru T1Tooo[ 173
29
1] 010

Misses: 3

Hits:

1

Memory
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Write-Through (REF 5)

Processor Cache Memory
BS1<M 1]m V tag data
LBS2<M[ 7 Im 11 101
SB$2>M[ 0 ] H
SBS$1>M[ 5 Im
mm) 1B $2<M[ 10 |y |!rv | 1] 010

SB S1>M[ 5 ]
SB $1 > M[ 10 ]

S0
S1 29

$2 -
S3

Misses: 4

Hits: 1
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Write-Through (REF 6)

Processor

LB $1M[ 1 ]
LB $2«M[ 7 ]
SB $2—>M[ O ]
SB $1>M[ 5 ]
LB $2 < M[ 10 ]
) SB $1 > M[ 5 ]
SB $1 — M[ 10 ]

M
M

H
M
M

S0
S1 29

$2 -
S3

Iru

Cache

V tag data

11101

1]010

Misses: 4

Hits: 1

Memory
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Write-Through (REF 6)

Processor

1
7
SB $2—>M[ 0
5

LB $2 < M[ 10
) SB $1 > M[ 5
SB $1 — M[ 10

1 m
1 m
1 H
I m
Im
l1H
]

S0

s1
$2
S3

Cache

V tag data

11101

Iru |1]010

Misses: 4

Hits: 2

Memory
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Write-Through (REF 7)

Processor Cache Memory

BS1<M 1]m V tag data
LBS2<M[ 7 Im 11 101
SB$2—>M[ 0 ] H

SB$S1>M[ 5 1m

LB $2«M[ 10 ] |'ru [1]010
SB$S1>M[ 5 ]H

) sg $1— M[ 10 ]

SO
$1 29 Misses: 4

Sz-

$3 Hits: 2




Write-Through (REF 7)

Processor

LB S1«M[ 1
LB $2 ¢« M[ 7
SB $2—>M[ 0
SB S1—>M[ 5
LB $2 « M[ 10
SB S1—>M[ 5

1 m
1 m
l1H
Im
Im
l1H
m) SB $1>M[ 10 ] H

SO
S1 29

Sz-

S3

Cache

V tag data

Misses: 4

Hits: 3

Memory
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How Many Memory References?
Write-through performance

Each miss (read or write) reads a block from mem
* 4 misses =2 8 mem reads

Fach store writes an item to mem

e 4 mem writes

Evictions don’t need to write to mem
* no need for dirty bit
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Write-Through (REF 8,9)

Processor

IBS1<M[ 1 1M
IB$S2<M[ 7 1M
SB$2—>M[ 0 ]H
SB$1>M[ 5 1M
LB $2< M[ 10 ] ™
SB$1—>M[ 5 ]H
SB $1—>M[ 10 ] H
SB $1>M[ 5 ]
mm) SB $1— M[ 10 ]

S0
s1
$2
S3

Iru

Cache

V tag data

11101

Misses: 4

Hits: 3

Memory
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Write-Through (REF 8,9)

Processor

IBS$S1<M[ 1 ]Mm
IB$S2<M[ 7 1M
SB$2—>M[ 0 ]H
SBS1>M[ 5 1M
LB $2 <« M[ 10 ] M
SBS$S1—>M[ 5 ]H
SB $1—>M[ 10 ] H
SBS$S1>M[ 5 ]H
mm) SB $1—> M[ 10 | H

S0
s1
$2
S3

Iru

Cache

V tag data

11101

Misses: 4

Hits: )

Memory
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Write-Through vs. Write-Back

Can we also design the cache NOT to write all
stores immediately to memory?

Keep the most current copy in cache, and update
memory when that data is evicted (write-back

policy)
Do we need to write-back all evicted lines?
No, only blocks that have been stored into (written)
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erte Back Meta- Data

\Y Tag Byte 1 Byte 2 .. Byte N

V =1 means the line has valid data
D = 1 means the bytes are newer than main memory
When allocating line:
e SetV=1,D=0,fillin Tag and Data
When writing line:
e SetD=1
When evicting line:
e [fD=0:justsetV=0
 |f D=1: write-back Data, thensetD=0,V=0
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Handling Stores (Write-Back)

Using byte addresses in this example! Addr Bus = 4 bits

Processor

policy

Assume write-allocate

S0

s1

$2

S3

Cach
Fully Assocelative Cache
2 cache lines
2 word block

3 bit tag field
1 bit block offset field

Vd tag data

0

Misses: 0O

Hits: 0

Memory

0
1
2

11 T
12

39



Write-Back (REF 1)

Processor Cache Memory

Vd tag data

0

S0

$1 Misses: 0O

S2
$3 Hits: 0




Write-Back (REF 1)

Processor

S0

s1

29

$2

S3

Iru

Cache

Vd tag data

1

0] 000 78

29

Misses: 1

Hits: 0

Memory
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Write-Back (REF 2)

Processor

LB $1 « M[
LB $2 « M[

S0

s1

29

$2

S3

Iru

Cache

Vd tag data

1

0] 000 78

29

Misses: 1

Hits: 0

Memory
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Write-Back (REF 2)

Processor

LB $1 « M|
LB $2 « M|

SO
S1 29

$2 -
S3

Iru

Cache

Vd tag data

1

0

000

78

29

Misses: 2

Hits:

0

Memory
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Write-Back (REF 3)

Processor Cache Memory
1B S2<M[ 7 Im|E[1]0]o000] 78
m)SB $2 > M[ 0 ] 59
SB S1>5>M[ 5 ]
LB $2 < M[ 10 ] 1{0jo011
SB S1>5>M[ 5 ]
SB $1 > M[ 10 ]
SO
s1 2 Misses: 2
52 [ .
Hits: 0

S3
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Write-Back (REF 3)

Processor

1

LB $2<M[ 7
mm)SB $2 > M[ 0
SBS1>M[ 5

LB $2 « M[ 10
SBS1>M[ 5

SB $1 - M[ 10

S0
S1 29
S2
S3

Iru

Cache

Vd tag data

1

11000 173

29

Misses: 2

Hits: 1

Memory
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Write-Back (REF 4)

Processor

1
7
SB $2—>M[ 0
5

SB S1—>M[ 5

S0
S1 29

Sz-

S3

Iru

Cache

Vd tag data

1

11000 173

29

Misses: 2

Hits: 1

Memory
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Write-Back (REF 4)

Processor

1
7
SB $2—>M[ 0
5

SB S1—>M[ 5

S0
S1 29

Sz-

S3

Iru

Cache
Vd tag data
1]1] 000 173
pL
111|010

Misses: 3

Hits:

1

Memory

11 T
12
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Write-Back (REF 5)

Processor

SB $1 — M[
mm) LB $2 < M[ 10

SBS1>M[ 5

SB $1 — M[ 10

SO
S1 29

Sz-

S3

Iru

Cache
Vd tag data
1]1] 000 173

29

Misses: 3

Hits: 1

Memory
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Write-Back (REF 5)

Processor

SB $1 — M[
mm) LB $2 <« M[ 10

SBS1>M[ 5

SB $1 — M[ 10

SO
S1 29

Sz-

S3

Iru

Cache Memory
0 173
Vd tag data
1]1] 000 173
pL
111010
Misses: 3
Hits:
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Write-Back (REF 5)

Processor

B S1<M[ 1 ]
LB $2<M[ 7 ]
SB$2—>M[ 0 ]
SB $1>M[ 5 ]
) LB $2 < M[ 10 ]
SB $S1>M[ 5 ]
SB $1—> M[ 10 ]

M
M

H
M
M

SO
S1 29

Sz-

S3

Iru

Cache

Vd tag data

0|]101

1]010

Misses: 4

Hits: 1
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Write-Back (REF 6)

Processor

LB $1e<M[ 1 ]
LB $2«M[ 7 ]
SB $2—>M[ 0 ]
SB $1—>M[ 5 ]
LB $2 < M[ 10 ]
) SB $1 > M[ 5 ]
SB $1 — M[ 10 ]

M
M

H
M
M

S0
S1 29

Sz-

S3

Iru

Cache

Vd tag data

1

0|]101

1]010

Misses: 4

Hits: 1

Memory

1 EETI
12
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Write-Back (REF 6)

Processor Cache Memory

IBS$S1<M[ 1 ]m Vd tag data
B $2<M[ 7 1m|3[1[0] 101
SBS2->M[ 0 ] HI™
SBS1>M[ 5 1m
LB $2< M[ 10 ]| |1[1]010
=) B S1>M[ 5 ]
SB $1 > M[ 10 ]
$0
51 25 Misses: 4
$2 |
$3 Hits: 2




Write-Back (REF 7)

Processor

LB $1e<M[ 1 ]
LB $2«M[ 7 ]
SB $2—>M[ 0 ]
SB $1—>M[ 5 ]
LB $2 < M[ 10 ]
) SB $1 > M[ 5 ]
SB $1 — M[ 10 ]

M
M
H
M
M
H

S0
S1 29

Sz-

S3

Iru

Cache

Vd tag data

1

0|]101

1]010

Misses: 4

Hits: 2

Memory

1 EETI
12
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Write-Back (REF 7)

Processor Cache Memory

Vd tag data
1]11]101

IBS1<M[ 1 ]m
IBS2<M[ 7 Im
SBS2>M[ 0 ]H
SBS1oM[ 5 1m
Im
l1H
1 H

Iru
-
[IKY

LB $2 <« M[ 10
SB $1 > M[ 5
=) sB $1 - M[ 10

SO
s1 Misses: 4
S2




How Many Memory References?
Write-back performance

Each miss (read or write) reads a block from mem

e 4 misses =2 8 mem reads

Some evictions write a block to mem
1 dirty eviction 2 2 mem writes
* (+ 2 dirty evictions later 2 +4 mem writes)
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How many memory references?
Each miss reads a block

Two words in this cache
Each evicted dirty cache line writes a block
Total reads: six words
Total writes: 4/6 words (after final eviction)
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Write-Back (REF 8,9)

Processor

Iru

Cache

Vd tag data

1

11101

1]010

Misses: 4

Hits: 3

Memory
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Write-Back (REF 8,9)

Processor

TrTrxx<<xT<=<

Iru

Cache

Vd tag data

1

11101

1]010

Misses: 4

Hits: )

Memory
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How Many Memory References?
Write-back performance

Each miss (read or write) reads a block from mem
* 4 misses =2 8 mem reads

Some evictions write a block to mem
1 dirty eviction 2 2 mem writes
* (+ 2 dirty evictions later 2 +4 mem writes)

By comparison write-through was

* Reads: eight words
* Writes: 4/6/8 etc words
* Write-through or Write-back?
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Write-through vs. Write-back

Write-through is slower

e But cleaner (memory always consistent)

Write-back is faster

* But complicated when multi cores sharing memory

0]



Performance: An Example
Performance: Write-back versus Write-through
Assume: large associative cache, 16-byte lines

for (i=1; i<n; i++)
Ale] += A[1i];

for (i=0; i<n; i++)
B[i] = A[i]

61



Performance Tradeoffs
Q: Hit time: write-through vs. write-back?
A: Write-through slower on writes.
Q: Miss penalty: write-through vs. write-back?
A: Write-back slower on evictions.
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Write Buffering
Q: Writes to main memory are slow!

A: Use a write-back buffer
* A small queue holding dirty lines
* Add to end upon eviction
* Remove from front upon completion

Q: What does it help?
A: short bursts of writes (but not sustained writes)
A: fast eviction reduces miss penalty
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Write-through vs. Write-back

Write-through is slower

e But simpler (memory always consistent)

Write-back is almost always faster
* write-back buffer hides large eviction cost

* But what about multiple cores with separate caches
but sharing memory?

Write-back requires a cache coherency protocol
* |Inconsistent views of memory
* Need to “snoop” in each other’s caches
* Extremely complex protocols, very hard to get right
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Cache-coherency

Q: Multiple readers and writers?
A: Potentially inconsistent views of memory
CPU CPU CPU CPU

LI LI |L2 LT (L2 {jLL]|LD{|LL
L2 L2

net Mem

Cache coherency protocol
* May need to snoop on other CPU’s cache activity
* Invalidate cache line when other CPU writes
* Flush write-back caches before other CPU reads
* Or the reverse: Before writing/reading...
* Extremely complex protocols, very hard to get right
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Summary
Caching assumptions

* small working set: 90/10 rule
e can predict future: spatial & temporal locality

Benefits
* (big & fast) built from (big & slow) + (small & fast)

Tradeoffs:
associativity, line size, hit cost, miss penalty, hit rate
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Summary
Memory performance matters!

e often more than CPU performance
* ... because it is the bottleneck, and not improving much
* ... because most programs move a LOT of data
Design space is huge
 Gambling against program behavior

e Cuts across all layers:
users = programs = os = hardware

Multi-core / Multi-Processor is complicated
* |Inconsistent views of memory
* Extremely complex protocols, very hard to get right
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