CPU Performance Pipelined CPU

Hakim Weatherspoon CS 3410, Spring 2012

Computer Science Cornell University

See P&H Chapters 1.4 and 4.5

A Simple CPU: remaining branch instructions

Memory Layout

Examples (big/little endian): # r5 contains 5 (0x00000005)

sb r5, 2(r0) lb r6, 2(r0)

sw r5, 8(r0) lb r7, 8(r0) lb r8, 11(r0)

0x00000000
0x00000001
0x00000002
0x00000003
0x00000004
0x00000005
0x00000006
0x00000007
0x00000008
0x00000009
0x00000000a
0x0000000b
• • •
0xffffffff

Control Flow: More Branches Conditional Jumps (cont.)

	ор	rs subop	offset	almost I-Type	
	6 bits	5 bits 5 bits	16 bits		
	ı	ı	1	signed offsets	
ор	subop	mnemonic	description		
0x1	0x0	BLTZ rs, offset	if R[rs] < 0 then PC =	PC+4+ (offset<<2)	
0x1	0x1	BGEZ rs, offset	if R[rs] ≥ 0 then PC =	PC+4+ (offset<<2)	
0x6	0x0	BLEZ rs, offset	if R[rs] ≤ 0 then PC =	PC+4+ (offset<<2)	
0x7	0x0	BGTZ rs, offset	if R[rs] > 0 then PC =	PC+4+ (offset<<2)	

Absolute Jump

Control Flow: Jump and Link Function/procedure calls

00001100000001001000011000000010

ор	immediate	J-Type
6 bits	26 bits	

ор	mnemonic	description
0x3	JAL target	r31 = PC+8 (+8 due to branch delay slot) PC = (PC+4) ₃₁₂₈ (target << 2)

ор	mnemonic	description
0x2	J target	PC = (PC+4) ₃₁₂₈ (target << 2)

Absolute Jump

ор	mnemonic	description
0x3		r31 = PC+8 (+8 due to branch delay slot) PC = (PC+4) ₃₁₂₈ (target << 2)

Performance

See: P&H 1.4

Design Goals What to look for in a computer system?

- Correctness: negotiable?
- Cost
 - -purchase cost = f(silicon size = gate count, economics)
 - -operating cost = f(energy, cooling)
 - -operating cost >= purchase cost
- Efficiency
 - -power = f(transistor usage, voltage, wire size, clock rate, ...)
 - -heat = f(power)
 - Intel Core i7 Bloomfield: 130 Watts
 - AMD Turion: 35 Watts
 - Intel Core 2 Solo: 5.5 Watts
 - Cortex-A9 Dual Core @800MHz: 0.4 Watts
- Performance
- Other: availability, size, greenness, features, ...

Performance

How to measure performance?

GHz (billions of cycles per second)
MIPS (millions of instructions per second)
MFLOPS (millions of floating point operations per second)
benchmarks (SPEC, TPC, ...)

Metrics

latency: how long to finish my

program

throughput: how much work

finished per unit time

How Fast?

Assumptions:

- alu: 32 bit ripple carry + some muxes
- next PC: 30 bit ripple carry
- control: minimized for delay (~3 gates)
- transistors: 2 ns per gate
- prog,. memory: 16 ns (as much as 8 gates)
- register file: 2 ns access
- ignore wires, register setup time

Better:

- alu: 32 bit carry lookahead + some muxes (~ 9 gates)
- next PC: 30 bit carry lookahead (~ 6 gates)

Better Still:

• next PC: cheapest adder faster than 21 gate delays

All signals are stable

- 80 gates => clock period of at least 160 ns, max frequency ~6MHz Better:
- 21 gates => clock period of at least 42 ns, max frequency ~24MHa 1

Adder Performance

32 Bit Adder Design	Space	Time
Ripple Carry	≈ 300 gates	≈ 64 gate delays
2-Way Carry-Skip	≈ 360 gates	≈ 35 gate delays
3-Way Carry-Skip	≈ 500 gates	≈ 22 gate delays
4-Way Carry-Skip	≈ 600 gates	≈ 18 gate delays
2-Way Look-Ahead	≈ 550 gates	≈ 16 gate delays
Split Look-Ahead	≈ 800 gates	≈ 10 gate delays
Full Look-Ahead	≈ 1200 gates	≈ 5 gate delays

Optimization: Summary

Critical Path

- Longest path from a register output to a register input
- Determines minimum cycle, maximum clock frequency

Strategy 1 (we just employed)

- Optimize for delay on the critical path
- Optimize for size / power / simplicity elsewhere
 - next PC

Processor Clock Cycle

ор	mnemonic	description
0x20	LB rd, offset(rs)	R[rd] = sign_ext(Mem[offset+R[rs]])
0x23	LW rd, offset(rs)	R[rd] = Mem[offset+R[rs]]
0x28	SB rd, offset(rs)	Mem[offset+R[rs]] = R[rd]
0x2b	SW rd, offset(rs)	Mem[offset+R[rs]] = R[rd]

Processor Clock Cycle

ор	func	mnemonic	description
0x0	0x08	JR rs	PC = R[rs]

ор	mnemonic	description	
0x2	J target	PC = (PC+4) ₃₁₂₈ (target << 2)	 5

Multi-Cycle Instructions

Strategy 2

Multiple cycles to complete a single instruction

E.g: Assume:

load/store: 100 ns

arithmetic: 50 ns

branches: 33 ns

Multi-Cycle CPU 30 MHz (33 ns cycle) with

- 3 cycles per load/store
- 2 cycles per arithmetic
- 1 cycle per branch

Faster than Single-Cycle CPU? 10 MHz (100 ns cycle) with

- 1 cycle per instruction

CPI

Instruction mix for some program P, assume:

- 25% load/store (3 cycles / instruction)
- 60% arithmetic (2 cycles / instruction)
- 15% branches (1 cycle / instruction)

Multi-Cycle performance for program P:

$$3 * .25 + 2 * .60 + 1 * .15 = 2.1$$

average cycles per instruction (CPI) = 2.1

Multi-Cycle @ 30 MHz Single-Cycle @ 10 MHz Single-Cycle @ 15 MHz

800 MHz PIII "faster" than 1 GHz P4

Example

Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS) run 2x faster by making arithmetic instructions faster

Instruction mix (for P):

- 25% load/store, CPI = 3
- 60% arithmetic, CPI = 2
- 15% branches, CPI = 1

Amdahl's Law

Amdahl's Law

```
Execution time after improvement = execution time affected by improvement + execution time unaffected amount of improvement
```

Or:

Speedup is limited by popularity of improved feature

Corollary:

Make the common case fast

Caveat:

Law of diminishing returns

Pipelining

See: P&H Chapter 4.5

The Kids

Alice

Bob

They don't always get along...

The Bicycle

The Materials

The Instructions

N pieces, each built following same sequence:

Design 1: Sequential Schedule

Alice owns the room

Bob can enter when Alice is finished
Repeat for remaining tasks
No possibility for conflicts

Sequential Performance

Latency:

Throughput:

Concurrency:

Can we do better?

Design 2: Pipelined Design Partition room into stages of a pipeline

One person owns a stage at a time 4 stages

4 people working simultaneously Everyone moves right in lockstep

time Pipelined Performance

Latency:

Throughput:

Concurrency:

Unequal Pipeline Stages 90 min 30 min 15 min 45 min 0h 3h... 1h 2h

Latency:

Throughput:

Concurrency:

Poorly-balanced Pipeline Stages

Latency:

Throughput:

Concurrency:

Pipeline Hazards Q: What if glue step of task 3 depends on output of task 1?

Lessons

Principle:

Throughput increased by parallel execution

Pipelining:

- Identify pipeline stages
- Isolate stages from each other
- Resolve pipeline *hazards*

A Processor

A Processor

Basic Pipeline

Five stage "RISC" load-store architecture

- 1. Instruction fetch (IF)
 - get instruction from memory, increment PC
- 2. Instruction Decode (ID)
 - translate opcode into control signals and read registers
- 3. Execute (EX)
 - perform ALU operation, compute jump/branch targets
- 4. Memory (MEM)
 - access memory if needed
- 5. Writeback (WB)
 - update register file

Pipelined Implementation

Break instructions across multiple clock cycles (five, in this case)

Design a separate stage for the execution performed during each clock cycle

Add pipeline registers (flip-flops) to isolate signals between different stages