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Policies and details

This document constitutes the second preliminary exam for 3220. It contains 3 questions and you
have one hour and thirty minutes to complete the exam. Please neatly write your solutions directly
onto the exam booklet (scratch paper is available if necessary). All of the work on this exam must
be your own and this exam is governed by the Cornell Academic Integrity Code. It is a violation
of the Academic Integrity Code to look at any exam other than your own, utilize any references,
or otherwise give or receive any unauthorized assistance. Please avoid discussing this exam with
any students scheduled to take the exam at an alternative time.

This exam is constructed to assess your grasp of the material in the class over several levels of
difficulty—some of the questions may be difficult. Please do your best to answer all of the questions
and provide partial solutions if you have them, partial credit will be awarded as appropriate. If you
have any questions during the exam please ask, I will not provide hints but if something is unclear
I am happy to clarify.

Question 1

Let Z ∈ Rn be distributed as N (0, I). Any affine transform of the random variables Z denoted
X = AZ+ b for A ∈ Rm×n with m ≤ n, linear independent rows, and b ∈ Rm follows a multivariate
normal distribution.

(a) Derive the mean and covariance matrix for X, i.e. X is distributed as N (µ,Σ)—compute µ
and Σ in terms of A and b.

(b) For any fixed matrix V ∈ Rn×k with orthonormal columns show that

E[‖V V TZ‖22] = k.

(c) Show that for any t ≥ 0

P
{
|‖V V TZ‖22 − k| ≥ t

√
k
}
≤ 2

t2
.

A fact you may use: A random variable distributed as χ2(d), i.e. the distribution of
∑d

i=1 Y
2
i

where the Yi are independent N (0, 1) random variables, has expected value d and variance 2d

Solution

(a) First, since E[AZ+b] = AE[Z]+b and E[Z] = 0 we conclude that µ = b. Second, since E[X] = b
we have that the covariance matrix is

Σ = E[(X − b)(X − b)T ]

= E[(AZ)(AZ)T ]

= AE[ZZT ]AT

= AAT .
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(b) Since ‖V V TZ‖22 = ‖V TZ‖22 and from the previous part we have that V TZ ∼ N (0, I), we can
conclude that ‖V TZ‖22 is distributed as a χ2(k) random variable. From this observation we
may immediately conclude that E[‖V V TZ‖22] = k.

(c) By Chebyshev’s inequality we have that for a > 0

P
{
|‖V V TZ‖22 − k| ≥ a

}
≤ 2k

a2
.

Letting a = t
√
k yields the desired result.

Question 2

Assume we are given a matrix V ∈ Rd×k with orthonormal columns and k < d and generate a
set of n independent and identically sampled vectors X1, X2, . . . , Xn as Xi = V Z + µ where Z is
distributed as N (0, Ik) and V Tµ = 0. As usual, let X ∈ Rd×n be the matrix whose columns are the
random samples, i.e. X(:, i) = Xi, and let X̂ be the version of X whose rows have mean zero.1

(a) Assume we forget to remove the mean from the rows ofX and accidentally compute the principle
components as the eigenvectors of XXT rather than X̂X̂T . To explore what happens (besides
the fact that we are not technically computing sample covariances) show that if ‖µ‖2 > 1 then
the eigenvector associated with the eigenvalue of largest magnitude of E[XXT ] is µ.

(b) Using some of the limit theorems and asymptotic behavior results that we have from class can
you argue about what happens when we do not take the expectation but let n→∞? (It is fine
to be informal here.) In other words, argue that in the same setting as above the eigenvector
associated with XXT “converges” to µ as n→∞. (You may assume ‖µ‖2 � 1 if you like, but
note that µ does not depend on n.)

Solution

(a) From the problem statement we have that X = V Z + µ1T where Zi are i.i.d. N (0, I) and
1 ∈ Rn is the vector of all ones. We then have that

E[XXT ] = E[(V Z + µ1T )(V Z + µ1T )T ]

= E[V ZZTV T + V Z1µT + µ1TZTV T + µ1T1µT ]

= nV V T + nµµT

where we have used that E[ZZT ] = nI and E[Z] = 0. Since scaling a matrix doesn’t change its
eigenvectors we just need to show that the eigenvalue of largest magnitude associated with

E[XXT ] = V V T + µµT

is in the direction of µ. There are several ways to show this, one is to observe that we may
write (recall that the columns of V and µ are orthogonal)

E[XXT ] =
[
V µ

‖µ‖2

] [I 0
0 ‖µ‖22

][
V T

µT

‖µ‖2

]
.

This is an eigen-decomposition of E[XXT ] omitting zero eigenvalues. Since the eigenvalues are
1 and ‖µ‖2, if ‖µ‖2 > 1 we have that the eigenvalue associated with the largest magnitude
eigenvalue is in the direction of µ.

1Recall that if we let µ̄ = 1
n

∑n
i=1Xi then X̂ = X − µ̄1T where 1 ∈ Rn is a vector of all ones.

2



(b) Similar to the above, and taking advantage of the fact that eigenvectors are invariant to scaling
we have that

1

n
XXT =

1

n
(V Z + µ1T )(V Z + µ1T )T

=
1

n− 1
V ZZTV T +

1

n
V Z1µT +

1

n
µ1TZTV T +

1

n
µ1T1µT .

We now observe that 1
nZ1→ 0 since it is the sample mean and 1

nZZ
T → I. This says that as

n→∞ we have
1

n
XXT → V V T + µµT

and the result follows from the same argument as above.

Question 3

Say we want to use rejection sampling to generate samples from a random variable X with pdf fX .
Assume we are given a means to generate samples of the random variable Y with pdf fY and that
fX(x)/fY (x) ≤ c for all x. Furthermore, assume there exists a x̃ such that fX(x̃)/fY (x̃) = c; in
other words, the upper bound is tight.

(a) If we also assume that γ ≤ fX(x)/fY (x) for all x and let N be the random variable denoting
the number of iterations of rejection sampling we have to run before accepting a sample. Show
that if we use rejection sampling with the best possible upper bound on fX(x)/fY (x) we have
that

P[N > k] ≤
(

1− γ

c

)k
(b) Now, lets say we incorrectly compute our upper bound on fX(x̃)/fY (x̃) and instead run rejec-

tion sampling with c̃ = 2c. In other words, we draw a sample from Y and a sample u from a
uniform[0, 1] distribution and only accept Y as a sample from X if

u ≤ fX(Y )

c̃fY (Y ).

Discuss what, if any, impact this would have on the prior result (for example, does the behavior
with respect to k change?).

Solution

(a) Observe that to see N > k we must reject k samples. At each step we independently reject the
sample independently with probability

1− fX(x)

cfY (x)
.

Using our bounds, this means that for each sample the probability of rejection is bounded from
above by (1−γ/c). As the rejections are independent we conclude that the probably k samples
are rejected is at most (1− γ/c)k.

(b) Nothing really changes, other than that we can instead say

P[N > k] ≤
(

1− γ

2c

)k
.

While this nominally effects the probabilities, structurally it does not seem to change much.
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