CS 3220: PRELIM 1 SOLUTIONS

Instructor: Anil Damle

POLICIES AND DETAILS

This document provides solutions to the first prelim exam. It is deliberately verbose in an effort to
provide several potential solutions to each problem and serve as an effective learning tool. It was
quite possible to get full points with a significantly more terse solution.

QUESTION 1

For the entirety of this problem you should assume all matrices involved are symmetric. In class we
talked about the power method, an algorithm (that under mild assumptions) allowed us to compute
the largest magnitude eigenvalue of A. For a matrix A, starting guess for the desired eigenvector
00 desired accuracy € > 0, and maximal number of iterations K the power method is given in
Algorithm 1

Algorithm 1 The power method

input: A, (9, and €
output: Eigenvector estimate v and eigenvalue estimate A
1. \0) — (U(O))TAU(O)
2: for k=1,2,...,K do
3. v®) = Aw (k1)
)

1 vk =o®) /]y ®])

5. Ak) — (k))TAU( )

6: if [|Av®) — XF)y(R)||, < € then
7 return: v = v and A = \*)
8: end if

9: end for

10: return: v = v®) and A = \*)

Now, lets say that we have a symmetric non-singular matrix A and we would like to compute

the eigenvalue smallest in magnitude. Denote the eigenvalue of A as Aj,..., A\, with associated
eigenvectors vy, ..., v, and assume they satisfy |\,| < [Ap—1] < -+ < |A1]. Address the following
questions:

(a) In terms of the eigenvalues of A, what is the largest magnitude eigenvalue of A=!? (Recall that
we have assumed A is non-singular.)

(b) In light of the previous question, can you use the power method (perhaps applied to a matrix
related to A rather than A itself) to find v, and \,? Rewrite Algorithm 1 to accomplish this
goal.

(¢) We can break down the computational cost of the power method into two parts—fixed costs
and any additional cost per iteration. For example, in Algorithm 1 there are no fixed costs and
the cost per iteration is O(n?) (as a consequence of the matrix vector multiplication). What is
the cost (broken down in this manner) for computing A,, and v,? Clearly explain your answer.



(d)

If your algorithm as written costs more than O(n?) per iteration can you rewrite the algorithm
so the per iteration cost is O(n?)? If so, do this and explain what the fixed cost is to make this
happen.

For Algorithm 1 we argued that the convergence rate of v¥) to vy is O (\)\2 / )q\k) and the

convergence rate of A*) to \; is O (\)\2/)\1|2k) . For your method in the prior part, what are

the convergence rates of v*®) to v, and A*) to \,? Clearly justify your answers.

QUESTION 1 SOLUTION

(a)

There are many ways to come to the following conclusion: the eigenvalues of Al are 1/);, where
Ai is an eigenvalue of A. Possible approaches include (reall that A is non-singular and therefore
|An| > 0) starting form

AUZ' = /\ﬂ}i,

whereby multiplying both sides by /\%_A_l yields

1

A = —vy

K3 AZ 1

for i = 1,2,...,n. Observe that the eigenvectors remain unchanged. Alternatively, one can

start with the spectral decomposition A = VAV and conclude that A=V = VA~! where we

have used that V=1 = V7 since it is an orthogonal matrix and that (A~'); = 1/); since it is
diagonal.

Irrespective of how one gets to the fact that the eigenvalues of A= are 1/); for i = 1,2,...,n
we can immediately conclude that the largest eigenvalue of A=!is 1/)\,.

From the problem statement we know that 1/A,, > 1/\,,_1 and therefore we can run the power
method on A~! and converge to 1/)\,. As noted above, since the eigenvectors do not change
we also get v, via this process. The key is to note that given A we need a way to apply
A~! to a vector at each step. This can be accomplished via, e.g., use of a QR factorization.
This algorithm is summarized as Algorithm 2, note that at the end we do not need to take the
reciprocal of the computed eigenvalue to actually get A\, back because we compute the Rayleigh
quotient with A rather than A~

In Algorithm 2, we have introduced two steps that could increase the overall cost. The factor-
ization A = QR is outside the for loop, so even though it costs O(n?) we only have to do it
once. Actually “applying” A~! to v*~1 is accomplished via multiplication by Q7 and solving
a triangular system, both of which cost O(n?). The existing work within each loop iteration is
no different from Algorithm 1 and costs O(n?). This collectively means we have satisfied the
requirements of the problem. The key to keeping the per iteration cost the same as before is
to factor A once outside of the loop.

Since we are effectively just applying the power method to the matrix A~ we can simply use
the largest and second largest eigenvalues of A~! in the convergence results. These values are

1/An and 1/\,_1 respectively. Therefore, the rate of convergence of v*) to v, is O <|)\n/)\n,1 |k>
and the convergence rate of A¥) to A, is O <])\n/)\n,1|2k> .



Algorithm 2 The inverse power method
(0

input: A4, v(®, and €
output: Eigenvector estimate v and eigenvalue estimate A
1: MO = ()T A
2: Factor A = QR
3: for k=1,2,...,K do
4: Solve Rv®) = QTv*=1) for v(*) using backwards substitution

5: o) = &) /|]p®) ||,

6: AR — (U(k))TAU(k’)

7 if |Av®) — X®)y*)||y < ¢ then
8: return: v = v®) and A = \*)
9: end if

10: end for

11: return: v = v® and A = A%

QUESTION 2
While discussed the definition of an induced matrix norm in general, we only really talked about it
in detail when the vector norm we used was || - ||2. Recall the definition of an induced matrix norm
given any vector norm || - || is
[A]] = max || Az].
]| =1

We will now consider ||A||s and see how it relates to the entries of A. (Turns out that this is not
a hard matrix norm to compute given the entries of A.)

(a) Prove that for any x with [|z||s <1
n
el < max SIAG, )
i=1
(b) Prove that for any j € {1,...,n} there exists a vector z with ||z« = 1 such that
n
(Az); =) |9
i=1

where (Ax); is entry j in the vector Az.

(¢) Using the following two results prove that
n
[Alloo = jgllaanM(j, i)l-
=1

QUESTION 2 SOLUTIONS

First, by explicit computation, we have that

n

(Az); = > A(j,i)ai. (1)

=1



(a) From (1) we and the definition of the vector norm || - || we have that
n

> AG, D)

i=1

n
< max > JAG )il
T =1

|Az]|co = max
]:17---777/

n
< A(g, )|z
—ﬂ%?f‘,n;’ (> D)l
n
< A,
—jf‘%f’.‘.}fn;’ ()],

where we have repeatedly used the triangle inequality in the first step and the fact that |z;| <1
fori=1,...,n since ||z|c < 1.

(b) Fix an index j and let
z; = sign(A(j, 1))
This means that if ; = 1if A(j,i) > 0 and z; = —1if A(j,i) <0, if A(j,i) = 0 we will simply
set x; = 0. Importantly, for this x we have that

(Az); =Y A(j.i)sign(A(j, 7)),

i=1
and since A(j,4)sign(A(j,1)) = |A(j,7)| we get that for this choice of x

n
(Az); = D _AG D)l
i=1
(c) From part (a) we have that for any x with ||zl <1

n
14z lo0 < jgf}fn;lz‘l(m)!-
1=
Therefore we can immediately conclude that

|l = max [[Azlloc < max S7IAG, ) (2)
=1

llzlloo=

Let 7’ be the index that solves
n
max A(4,1)],
j:l,.u,n;‘ (7, 4)]

from part (b) we know there is an x with ||z||s such that

(Ax)y =Y A" 9)].
=1
This implies that
- .
max || Azl 2 jgf}fn;IA(y,Z)!, (3)

[[#]loo=1

since the maximum over all possible z with ||z||o = 1 is definitely greater than or equal to the
value for any specific z with ||z|l«c = 1. Combining (3) and (2) concludes the proof.



QUESTION 3

We have spent a fair bit of time discussing the SVD, nevertheless there remain additional interpre-
tations to explore. As we discussed in class a square matrix A € R"*" is singular if at least one
of its singular values is zero. It turns out that the smallest singular value of a matrix A actually
tells us how close we are to a singular matrix, in other words what the smallest perturbation to A
is that can make it singular—this seems useful to know.

(a) Given two vectors x and y with ||z|]2 = 1 and ||y||2 = 1 prove that

lzy|l2 = 1.

(b) Given a non-singular matrix A with SVD A = UXV7T show that there is a rank-one perturbation
E such that A + E is singular and ||Ell2 = oy,.

(c) Prove that given any matrix E with ||E||2 < 0, A+ E is non-singular. Here, o), is the smallest
singular value of A. (Hint: we talked about how the largest singular value of a matrix bounds
how big A can make a vector with unit norm; can you cook up a lower bound on how small A
can make a vector with unit norm in terms of singular values?)

QUESTION 3 SOLUTION

(a) There are many ways to approach this problem. One is to observe that zy” is essentially its
own reduced SVD with o1 = 1 and therefore ||zy’ ||z = 1. More formally we have that

lzy |2 = max [lay" 2|2
Jella=1

= max |y 2|z
Jella=1

= max |y’ 2.

[[2]l2=1

Similar to Question 2 taking z = y, which satisfies ||z||2 = 1, yields [lzy? z||2 = ||ly||3 = 1. Paired
with the Cauchy-Schwartz inequality |y” z| < ||y|2/|z|l2 we conclude that ||zyT|s = 1.

(b) Let A= UXVT be the SVD of A. Rewritten as

n
§ : T

A= giU;v;
i=1

we see that if £ = —anuiviT
n—1

A+FE = Zdiui’l);r.
i=1
This shows that A + E has an SVD with one singular value equal to zero and is therefore
singular. From part (a) we have that || — o,u0! |2 = opljuiv] |2 = op.

(c) One way to show that A + F is non-singular is to show that the only vector in the null space
is zero. To accomplish this consider any vector T # 0, we will show that

AZ + BT #0.



First, let = Z/||Z||2, since
Z(Az + Ex) #0
if and only if Ax + Fx # 0 we may restrict our discussion to unit length vectors.

Now, for any unit length vector  we know that ||Ex|ls < o, courtesy of our assumptions.
Similarly, based on our pictorial representation of the SVD we have that ||Ax|2 > o,,. To state
this formally, observe that

[Azlz = [|UZV 2]y

=BV 7Tz

" 1/2
= (Z oivz-Tx)
i=1 : "
> op, <Z v?az)

i=1
> on|VT a2

> opl|z]l2-

Finally, since ||Az||2 > o, and [|Ez||2 < oy, clearly Az + Ex # 0.



