
CS 3220: Homework 6
Instructor: Anil Damle
Due: December 9 (Due to university policies on due dates, only one slip day may be
used for this assignment)

Policies

You may discuss the homework problems freely with other students, but please refrain from looking
at their code or writeups (or sharing your own). Ultimately, you must implement your own code
and write up your own solution to be turned in. Your solution, including plots and requested
output from your code should be submitted via the CMS as a pdf file. Additionally, please submit
any code written for the assignment via the CMS as well.

Question 1

For this problem we are going to explore a mathematical model whose details span all three aspects
of the course—a so-called Gaussian Process. In particular, a Gaussian process is a model that can
be used to capture time series or spatial data and model it via a multi-variate normal random
variable. In other words, given a set of observation points {xi} for i = 1, . . . , n with xi ∈ Rd a
Gaussian Process models observed data at the points {xi} as N (µ,Σ) where µi is the mean at xi
and Σi,j is the covariance between observations at xi and xj .

So, how does this intersect with our class? We will consider a situation where we are given
observed data at a set of points and would like to “fit” the underlying covariance matrix Σ. For the
remainder of this problem we will consider µ = 0 and d = 2 for simplicity. In general this problem
may be tricky, but one way to make this feasible is to parametrize the entries of the covariance
matrix in some way. To do this we define a kernel function

K(x, y) = exp
(
−‖x− y‖2θ

)
+ 10−3δ(x, y)

for any two points x, y ∈ R2, where δ(x, y) = 1 if x = y and 0 otherwise. We then consider a model
where for all pairs of points xi and xj the covariance matrix K ∈ Rn×n takes the form

Ki,j = K(xi, xj ; θ)

where
‖xi − xj‖2θ = (xi(1)− xj(1))2/θ1 + (xi(2)− xj(2))2/θ2.

This model has two unknown parameters, θ1 and θ2 that dictate how quickly the covariance goes
to zero in the two coordinate directions—they would often be described as length scales. We have
also added a so-called “nugget effect” to simplify matters, this additive term models uncertainty
in the measurements and could itself be unknown and estimated—we simply picked a reasonable
value of 10−3 here.

Concretely, we will assume we are given observed data {zi}ni=1 and the underlying observation
locations {xi}ni=1 from a Gaussian Process that we assume has a covariance matrix of this form.

We would then like to estimate θ1 and θ2, we will call our estimators θ̂1 and θ̂2.
As we saw in class, one possible approach is maximum likelihood estimation and that is what

we will use here. In particular, the log-likelihood function is (up to additive constants)

`(θ1, θ2) = −1

2
zTΣ−1z − 1

2
log det(Σ).
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Importantly, given a positive definite matrix Σ and its Cholesky factor L such that LLT = Σ we
can compute its log determinant via

log det(Σ) = 2
n∑
i=1

logLi,i.

(As an aside, in general the computation of determinants if often avoided; if absolutely necessary
it is often done via triangular factorizations.) Lastly, we can compute the derivatives of the log-
likelihood via

δ`(θ)

δθp
=

1

2
zTΣ−1ΣpΣ

−1z − 1

2
Trace(Σ−1Σp), p = 1, 2,

where

[Σp]i,j =

(
δK(x, y; θ)

δθp

)
(xi, xj).

We will simply let θ̂1 and θ̂2 come from the MLE.

(a) First, we will generate realizations of a Gaussian process to see how the parameter θ ∈ R2

changes the behavior of the model. For various values of θ1 and θ2 generate realizations of a
Gaussian process on a grid of points {xi} in the box [−1, 1] × [−1, 1]. 50 points per direction
is sufficient, this means you will have n = 2, 500. Visualize your generated data for several
choices of θ you feel exhibit clearly different behavior and discuss why you observe what you
do.

(b) Now, set θ1 = 0.1 and θ2 = 1 and pick 400 random points in [−1, 1]× [−1, 1] to be the set {xi}.
You may do this by drawing independent uniform random variables for the two coordinates of
the data points. Draw a realization of a Gaussian process with these parameters and observation
points and call the observations {zi}. Implement gradient descent with a simple line search to
take the points {xi} and data {zi} and minimize the negative log-likelihood to find the MLE.
Two tips: you may limit the number of steps to about 50 and after every step you may set
your current iterates for θ to be the maximum of their current value and 10−3. (This, crudely,
helps avoid accidentally leaving the feasible set of θ1 > 0 and θ2 > 0—you will probably not
run into issues if you let the line search do its job.) Starting “near” the “true” parameters use
your algorithm to find the MLE θ̂. Plot the value of the negative log-likelihood as a function
of iteration, does it behave as expected? What are your final parameter values? are they near
what you expect?

(c) Given the observed data, observation points, and estimated parameters θ̂ we can generate
realizations of the process conditioned on the observed data. To do this we condition of the
observations. Consider a set of points {yi}mi=1 where we wish to observe realizations of the
process and call this realization f ∈ Rm. To describe the distribution of f conditioned on
observing z we define the matrices

[Σ(X,Y ; θ)]i,j = K(Xi, Yi; θ)

for arbitrary sets X and Y. (For example, Σ(x, x; θ) is simply the covariance matrix for the
observed data points.)

We now have f is distributed as N (µf ,Σf ) where

µf = Σ(y, x; θ)Σ(x, x; θ)−1z
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and
Σf = Σ(y, y; θ)− Σ(y, x; θ)Σ(x, x; θ)−1Σ(x, y; θ).

Using your fit parameters θ̂ generate several realizations of your Gaussian Process on a 50× 50
grid in [−1, 1] × [−1, 1]. Provide plots that include the generated realizations and observed
data, do they match what you expect? (Note that this model gives us some natural notion of
uncertainties, we are just generating realizations of the underlying model and could use many
of them to say something about what we expect.)
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