
gamedesigninitiative
at cornell university

the

2D Sprite Graphics

Lecture 14

gamedesigninitiative
at cornell university

the

Graphics Lectures

� Drawing Images
� SpriteBatch interface
� Coordinates and Transforms

� Drawing Perspective
� Camera
� Projections

� Drawing Primitives
� Color and Textures
� Polygons

2D Sprite Graphics2

gamedesigninitiative
at cornell university

the

Graphics Lectures

� Drawing Images
� SpriteBatch interface
� Coordinates and Transforms

� Drawing Perspective
� Camera
� Projections

� Drawing Primitives
� Color and Textures
� Polygons

2D Sprite Graphics

bare minimum
to draw graphics

side-scroller vs.
top down

necessary for
lighting & shadows

3

gamedesigninitiative
at cornell university

the

Graphics Lectures

� Drawing Images
� SpriteBatch interface
� Coordinates and Transforms

� Drawing Perspective
� Camera
� Projections

� Drawing Primitives
� Color and Textures
� Polygons

2D Sprite Graphics4

Animation is part

of AI Lectures

gamedesigninitiative
at cornell university

the

Graphics Lectures

� Drawing Images
� SpriteBatch interface
� Coordinates and Transforms

� Drawing Perspective
� Camera
� Projections

� Drawing Primitives
� Color and Textures
� Polygons

2D Sprite Graphics5

bare minimum
to draw graphics

side-scroller vs.
top down

necessary for
lighting & shadows

gamedesigninitiative
at cornell university

the

Take Away for Today

� Coordinate Spaces and drawing
� What is screen space? Object space?
� How do we use the two to draw objects?
� Do we need any other spaces as well?

� Drawing Transforms
� What is a drawing transform?
� Describe the classic types of transforms.
� List how to use transforms in a game.

2D Sprite Graphics6

gamedesigninitiative
at cornell university

the

The SpriteBatch Interface

� In this class we restrict you to 2D graphics
� 3D graphics are much more complicated
� Covered in much more detail in other classes
�Art 1701: Artist tools for 3D Models
�CS 4620: Programming with 3D models

� In LibGDX, use the class SpriteBatch
� Sprite: Pre-rendered 2D (or even 3D) image
� All you do is composite the sprites together

2D Sprite Graphics7

gamedesigninitiative
at cornell university

the

� Use coordinate systems
� Each pixel has a coordinate
� Draw something at a pixel by

� Specifying what to draw
� Specifying where to draw

� Do we draw each pixel?
� Use a drawing API
� Given an image; does work
� What LibGDX gives us

2D Sprite Graphics

Drawing in 2 Dimensions

y

x

(2,4)

(-1,-1)

8

gamedesigninitiative
at cornell university

the

Sprite Coordinate Systems

� Screen coordinates: where to paint the image
� Think screen pixels as a coordinate system
� Very important for object transformations

� Example: scale, rotate, translate
� In 2D, LibGDX origin is bottom left of screen

� Object coordinate: location of pixels in object
� Think of sprite as an image file (it often is)
� Coordinates are location of pixels in this file
� Unchanged when object moves about screen

2D Sprite Graphics9

gamedesigninitiative
at cornell university

the

2D Sprite Graphics10

Sprite Coordinate Systems

(0,0)

Screen: (300,200)
Object: (0,0)

+y

+x

gamedesigninitiative
at cornell university

the

2D Sprite Graphics11

Historical Coordinate Systems
(0,0)

Screen: (300,200) Object: (0,0)

+y

+x

gamedesigninitiative
at cornell university

the

2D Sprite Graphics12

Historical Coordinate Systems
(0,0)

Screen: (300,200) Object: (0,0)

+y

+x

Mouse coordinates still do this
(see Loading.java in labs)

gamedesigninitiative
at cornell university

the

Drawing Sprites

� Basic instructions:
� Set origin for the image in object coordinates
� Give the SpriteBatch a point to draw at
� Screen places origin of image at that point

� What about the other pixels?
� Depends on transformations (rotated? scaled?)
� But these (almost) never affect the origin

� Sometimes we can reset the object origin
2D Sprite Graphics13

gamedesigninitiative
at cornell university

the

2D Sprite Graphics14

Sprite Coordinate Systems

(0,0)

Screen: (300,200)
Object: (0,0)

+y

+x

gamedesigninitiative
at cornell university

the

2D Sprite Graphics15

Sprite Coordinate Systems

(0,0)

Screen: (300,200)
Object: (0,0)

+y

+x

gamedesigninitiative
at cornell university

the

2D Sprite Graphics16

Sprite Coordinate Systems

(0,0)

Screen: (300,200)

Object: (0,0)

+y

+x

gamedesigninitiative
at cornell university

the

2D Sprite Graphics17

Sprite Coordinate Systems

(0,0)

Screen: (300,200)

Object: (0,0)

+y

+x

gamedesigninitiative
at cornell university

the

Drawing with SpriteBatch

public void draw(float dt) {
…
spriteBatch.begin();
spriteBatch.draw(image0);
spriteBatch.draw(image1, pos.x, pos.y);
…
spriteBatch.end();
…

}
2D Sprite Graphics

screen
coordinates

18

gamedesigninitiative
at cornell university

the

2D Transforms

� A function T : R2®R2

� “Moves” one set of points to another set of points
� Transforms one “coordinate system” to another
� The new coordinate system is the distortion

� Idea: Draw on paper and then “distort” it
� Examples: Stretching, rotating, reflecting
� Determines placement of “other” pixels
� Also allows us to get multiple images for free

2D Sprite Graphics19

gamedesigninitiative
at cornell university

the

The “Drawing Transform”

� T : object coords ® screen coords
� Assume pixel (a,b) in art file is blue
� Then screen pixel T(a,b) is blue
� We call T the object map

� By default, object space = screen space
� Color of image at (a,b) = color of screen at (a,b)
� By drawing an image, you are transforming it

� S an image; transformed image is T(S)
2D Sprite Graphics20

gamedesigninitiative
at cornell university

the

Example: Translation

� Simplest transformation: T(v) = v + u
� Shifts object in direction u
� Distance shifted is magnitude of u

� Used to place objects on screen
� By default, object origin is screen origin
� T(v) = v + u places object origin at u

2D Sprite Graphics

S T(S)

21

gamedesigninitiative
at cornell university

the

Composing Transforms

� Example: T : R2®R2, S : R2®R2

� Assume pixel (a,b) in art file is blue
� Transform T makes pixel T(a,b) blue
� Transform S!T makes pixel S(T(a,b)) blue

� Strategy: use transforms as building blocks
� Think about what you want to do visually
� Break it into a sequence of transforms
� Compose the transforms together

2D Sprite Graphics22

gamedesigninitiative
at cornell university

the

Application: Scrolling

2D Sprite Graphics

World

World origin

23

gamedesigninitiative
at cornell university

the

Application: Scrolling

2D Sprite Graphics

World

World origin

Object origin

24

gamedesigninitiative
at cornell university

the

Application: Scrolling

2D Sprite Graphics

Screen

World

World origin

Screen origin

Object origin

25

gamedesigninitiative
at cornell university

the

Scrolling: Two Translations

� Place object in the World at point p = (x,y)
� Basic drawing transform is T(v) = v+p

� Suppose Screen origin is at q = (x’,y’)
� Then object is on the Screen at point p-q
� S(v) = v-q transforms World coords to Screen
� S!T(v) transforms the Object to the Screen

� This separation makes scrolling easy
� To move the object, change T but leave S same
� To scroll the screen, change S but leave T same

2D Sprite Graphics26

gamedesigninitiative
at cornell university

the

Scrolling: Practical Concerns

� Many objects will exists outside screen
� Can draw if want; graphics card will drop them
� It is expensive to keep track of them all
� But is also unrealistic to always ignore them

� In graphics, drawing transform = matrix
� Hence composition = matrix multiplication
� Details beyond the scope of this course
� LibGDX handles all of this for you (sort of)

2D Sprite Graphics27

gamedesigninitiative
at cornell university

the

Using Transforms in LibGDX

� LibGDX has methods for creating transforms
� Two types depending on application
� Affine2 for transforming 2D sprites
� Matrix4 for transforming 3D object
�But also for transforming fonts

� Parameters fill in details about transform
� Example: Position (x,y) if a translation
� The most math you will ever need for this

2D Sprite Graphics28

gamedesigninitiative
at cornell university

the

Affine2

� Pass it to a draw command
� Applies only to that image
� Adds to CPU power

� Handles everything
� Location is in transform
� Transform to object position

� sb.draw(image,wd,ht,affine);

2D Sprite Graphics29

Transforms in SpriteBatch

Matrix4

� Pass to setTransformMatrix
� Applies to all images!
� Handled by the GPU but…
� Change causes GPU stall

� Only use this if you must
� e.g. Transforming fonts
� See GameCanvas in Lab1

gamedesigninitiative
at cornell university

the

Affine2

� Pass it to a draw command
� Applies only to that image
� Adds to CPU power

� Handles everything
� Location is in transform
� Transform to object position

� sb.draw(image,wd,ht,affine);

2D Sprite Graphics30

Transforms in SpriteBatch

Matrix4

� Pass to setTransformMatrix
� Applies to all images!
� Handled by the GPU but…
� Change causes GPU stall

� Only use this if you must
� e.g. Transforming fonts
� See GameCanvas in Lab1

Only supports a
TextureRegion??

gamedesigninitiative
at cornell university

the

Positioning in LibGDX

public void draw(float dt) {

Vector2 pos = object.getPosition();

spriteBatch.begin();
spriteBatch.draw(image,pos.x,pos.y);

spriteBatch.end();
}

2D Sprite Graphics31

gamedesigninitiative
at cornell university

the

Positioning in LibGDX

public void draw(float dt) {
Affine2 oTran = new Affine2();
oTran.setToTranslation(object.getPosition());

spriteBatch.begin();
spriteBatch.draw(image,width,height,oTran);

spriteBatch.end();
}

2D Sprite Graphics32

Translate origin to
position in world.

why did they
do this???

gamedesigninitiative
at cornell university

the

Positioning in LibGDX

public void draw(float dt) {
Affine2 oTran = new Affine2();
oTran.setToTranslation(object.getPosition());
Affine2 wtran = new Affine2();
Vector2 wPos = viewWindow.getPosition();
wTran.setToTranslation(-wPos.x,-wPos.y);
oTran.mul(wTran);
spriteBatch.begin();

spriteBatch.draw(image,width,height,oTran);
spriteBatch.end();

}

2D Sprite Graphics33

scrolling
support

gamedesigninitiative
at cornell university

the

Transform Gallery

� Uniform Scale:

2D Sprite Graphics

affine.setToScaling(s,s);

34

gamedesigninitiative
at cornell university

the

Transform Gallery

� Uniform Scale:

2D Sprite Graphics

affine.setToScaling(s,s);

35

Represent as
2x2 matrix

gamedesigninitiative
at cornell university

the

Matrix Transform Gallery

� Nonuniform Scale:

2D Sprite Graphics

affine.setToScaling(sx,sy);

36

gamedesigninitiative
at cornell university

the

Matrix Transform Gallery

� Rotation:

2D Sprite Graphics

affine.setToRotationRad(angle);

37

gamedesigninitiative
at cornell university

the

Matrix Transform Gallery

� Reflection:

� View as special case of Scale

2D Sprite Graphics38

gamedesigninitiative
at cornell university

the

Matrix Transform Gallery

� Shear:

2D Sprite Graphics39

affine.setToShearing(a,1);

gamedesigninitiative
at cornell university

the

Translation Revisited

� Translation is not a linear transform
� To be linear, T(v+w) = T(v)+T(w)
� Translation transform is T(v) = v+u
� T(v)+T(w) = (v+u)+(w+u) = v+w+2u ≠ T(v+w)

� But LibGDX treats it like one
� Affine2 transforms support translation
� Matrix4 supports matrix.set(affine)

� What is going on here?
2D Sprite Graphics

gamedesigninitiative
at cornell university

the

Homogenous Coordinates

� Add an extra dimension to the calculation.
� An extra component w for vectors
� For affine transformations, can keep w = 1
� Add extra row, column to matrices (so 3×3)

� Dimension is for calculation only
� We are not in 3D-space yet
� 3D transforms need 4D vectors, 4×4 matrices

� Matrix4 because LibGDX supports 3D

2D Sprite Graphics

gamedesigninitiative
at cornell university

the

Homogenous Coordinates

� Linear transforms have dummy row and column

� Translation uses extra column

2D Sprite Graphics

gamedesigninitiative
at cornell university

the

Affine Transforms Revisited

� Affine: Linear on homogenous coords
� Equal to all transforms T(v) = Mv+p
� Treat everything as matrix multiplication

� Why does this work?
� Area of mathematics called projective geometry
� Far beyond the scope of this class

� LibGDX hides all the messy details
� Just stick with Affine2 class for now

2D Sprite Graphics

gamedesigninitiative
at cornell university

the

Affine Transform Gallery

2D Sprite Graphics

� Translation:

gamedesigninitiative
at cornell university

the

Affine Transform Gallery

2D Sprite Graphics

� Uniform Scale:

gamedesigninitiative
at cornell university

the

Affine Transform Gallery

2D Sprite Graphics

� Nonuniform Scale:

gamedesigninitiative
at cornell university

the

Affine Transform Gallery

2D Sprite Graphics

� Rotation:

gamedesigninitiative
at cornell university

the

Affine Transform Gallery

2D Sprite Graphics

� Reflection:

� Special case of Scale

gamedesigninitiative
at cornell university

the

Affine Transform Gallery

2D Sprite Graphics

� Shear:

gamedesigninitiative
at cornell university

the

2D Sprite Graphics

Compositing Transforms

rotate, then translate translate, then rotate

� In general not commutative: order matters!

50

gamedesigninitiative
at cornell university

the

2D Sprite Graphics

Compositing Transforms

scale, then rotate rotate, then scale

� In general not commutative: order matters!

51

gamedesigninitiative
at cornell university

the

2D Sprite Graphics52

Rotating Object About Center

(0,0)

+y

+x

� Translate center to origin

� Rotate about origin

� Translate to object position

gamedesigninitiative
at cornell university

the

2D Sprite Graphics53

Rotating Object About Center

(0,0)

+y

+x

� Translate center to origin

� Rotate about origin

� Translate to object position

gamedesigninitiative
at cornell university

the

2D Sprite Graphics54

Rotating Object About Center

+y

+x

� Translate center to origin

� Rotate about origin

� Translate to object position

gamedesigninitiative
at cornell university

the

2D Sprite Graphics55

Rotating Object About Center

+y

+x

� Translate center to origin

� Rotate about origin

� Translate to final position

gamedesigninitiative
at cornell university

the

2D Sprite Graphics56

Rotating Object About Center

(0,0)

+y

+x

� Translate center to origin

� Rotate about origin

� Translate to final position

gamedesigninitiative
at cornell university

the

� Break asset into parts
� Natural for joints/bodies
� Animate each separately

� Cuts down on filmstrips
� Most steps are transforms
� A lot less for you to draw
� Also better for physics

� Several tools to help you
� Example: Spriter, Spine
� Great for visualizing design

Scene Graphs57

Transforms and Modular Animation

gamedesigninitiative
at cornell university

the

� Break asset into parts
� Natural for joints/bodies
� Animate each separately

� Cuts down on filmstrips
� Most steps are transforms
� A lot less for you to draw
� Also better for physics

� Several tools to help you
� Example: Spriter, Spine
� Great for visualizing design

Scene Graphs58

Transforms and Modular Animation

gamedesigninitiative
at cornell university

the

� Break asset into parts
� Natural for joints/bodies
� Animate each separately

� Cuts down on filmstrips
� Most steps are transforms
� A lot less for you to draw
� Also better for physics

� Several tools to help you
� Example: Spriter, Spine
� Great for visualizing design

Scene Graphs59

Transforms and Modular Animation

gamedesigninitiative
at cornell university

the

Spine Demo

Scene Graphs60

gamedesigninitiative
at cornell university

the

Spine Demo

Scene Graphs61

More on this in AI Lecture

gamedesigninitiative
at cornell university

the

A Word About Scaling

� If making smaller, it drops out pixels
� Suppose T(v) = 0.5v
� (0,0) = T(0,0); pixel (0,0) colored from (0,0) in file
� (0,1) = T(0,2); pixel (0,1) colored from (0,2) in file

� But if making larger, it duplicates pixels
� Suppose T(v) = 2v
� (0,1) = T(0,0.5); pixel (0,1) colored from (0,1) in file
� (0,1) = T(0,1); pixel (0,2) colored from (0,1) in file

� This can lead to jaggies

2D Sprite Graphics62

gamedesigninitiative
at cornell university

the

� Jaggies: Image is blocky

� Possible to smooth image
� Done through blurring
� In addition to transform
� Some graphic card support

� Solution for games
� Shrinking is okay
� Enlarging not (always) okay
� Make sprite large as needed

2D Sprite Graphics

Scaling and Jaggies

63

gamedesigninitiative
at cornell university

the

Summary

� Drawing is all about coordinate systems
� Object coords: Coordinates of pixels in image file
� Screen coords: Coordinates of screen pixels

� Transforms alter coordinate systems
� “Multiply” image by matrix to distort them
� Multiply transforms together to combine them
�Matrices are not commutative
�Later transforms go on “the right”

2D Sprite Graphics64

