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Take Away for Today

� Coordinate Spaces and drawing
� What is screen space?  Object space?
� How do we use the two to draw objects?
� Do we need any other spaces as well?

� Drawing Transforms
� What is a drawing transform?
� Describe the classic types of transforms.
� List how to use transforms in a game.

2D Sprite Graphics6
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The SpriteBatch Interface

� In this class we restrict you to 2D graphics
� 3D graphics are much more complicated
� Covered in much more detail in other classes
�Art 1701: Artist tools for 3D Models
�CS 4620: Programming with 3D models

� In LibGDX, use the class SpriteBatch
� Sprite: Pre-rendered 2D (or even 3D) image
� All you do is composite the sprites together

2D Sprite Graphics7
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� Use coordinate systems
� Each pixel has a coordinate
� Draw something at a pixel by

� Specifying what to draw
� Specifying where to draw

� Do we draw each pixel?
� Use a drawing API
� Given an image; does work
� What LibGDX gives us

2D Sprite Graphics

Drawing in 2 Dimensions 

y

x

(2,4)

(-1,-1)
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Sprite Coordinate Systems

� Screen coordinates: where to paint the image
� Think screen pixels as a coordinate system
� Very important for object transformations

� Example: scale, rotate, translate
� In 2D, LibGDX origin is bottom left of screen

� Object coordinate: location of pixels in object
� Think of sprite as an image file (it often is)
� Coordinates are location of pixels in this file
� Unchanged when object moves about screen

2D Sprite Graphics9
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Historical Coordinate Systems
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Mouse coordinates still do this
(see Loading.java in labs)
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Drawing Sprites

� Basic instructions:
� Set origin for the image in object coordinates
� Give the SpriteBatch a point to draw at
� Screen places origin of image at that point

� What about the other pixels?
� Depends on transformations (rotated? scaled?)
� But these (almost) never affect the origin

� Sometimes we can reset the object origin
2D Sprite Graphics13
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Drawing with SpriteBatch

public void draw(float dt) {
…
spriteBatch.begin();
spriteBatch.draw(image0);
spriteBatch.draw(image1, pos.x, pos.y);
…
spriteBatch.end();
…

}
2D Sprite Graphics

screen 
coordinates
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2D Transforms

� A function T : R2®R2

� “Moves” one set of points to another set of points
� Transforms one “coordinate system” to another
� The new coordinate system is the distortion

� Idea: Draw on paper and then “distort” it
� Examples: Stretching, rotating, reflecting
� Determines placement of “other” pixels
� Also allows us to get multiple images for free

2D Sprite Graphics19
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The “Drawing Transform”

� T : object coords ® screen coords
� Assume pixel (a,b) in art file is blue
� Then screen pixel T(a,b) is blue
� We call T the object map

� By default, object space = screen space
� Color of image at (a,b) = color of screen at (a,b)
� By drawing an image, you are transforming it

� S an image; transformed image is T(S) 
2D Sprite Graphics20
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Example: Translation

� Simplest transformation: T(v) = v + u
� Shifts object in direction u
� Distance shifted is magnitude of u

� Used to place objects on screen
� By default, object origin is screen origin
� T(v) = v + u places object origin at u

2D Sprite Graphics

S T(S)
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Composing Transforms

� Example: T : R2®R2, S : R2®R2

� Assume pixel (a,b) in art file is blue
� Transform T makes pixel T(a,b) blue
� Transform S!T makes pixel S(T(a,b)) blue

� Strategy: use transforms as building blocks
� Think about what you want to do visually
� Break it into a sequence of transforms
� Compose the transforms together

2D Sprite Graphics22
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Application: Scrolling

2D Sprite Graphics

World

World origin
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Scrolling: Two Translations

� Place object in the World at point p = (x,y)
� Basic drawing transform is T(v) = v+p

� Suppose Screen origin is at q = (x’,y’)
� Then object is on the Screen at point p-q
� S(v) = v-q transforms World coords to Screen
� S!T(v) transforms the Object to the Screen

� This separation makes scrolling easy
� To move the object, change T but leave S same
� To scroll the screen, change S but leave T same

2D Sprite Graphics26
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Scrolling: Practical Concerns

� Many objects will exists outside screen
� Can draw if want; graphics card will drop them
� It is expensive to keep track of them all
� But is also unrealistic to always ignore them

� In graphics, drawing transform = matrix
� Hence composition = matrix multiplication
� Details beyond the scope of this course
� LibGDX handles all of this for you (sort of)

2D Sprite Graphics27
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Using Transforms in LibGDX

� LibGDX has methods for creating transforms
� Two types depending on application
� Affine2 for transforming 2D sprites
� Matrix4 for transforming 3D object
�But also for transforming fonts

� Parameters fill in details about transform
� Example: Position (x,y) if a translation
� The most math you will ever need for this

2D Sprite Graphics28
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Affine2

� Pass it to a draw command
� Applies only to that image
� Adds to CPU power

� Handles everything
� Location is in transform
� Transform to object position

� sb.draw(image,wd,ht,affine);

2D Sprite Graphics29

Transforms in SpriteBatch

Matrix4

� Pass to setTransformMatrix
� Applies to all images!
� Handled by the GPU but…
� Change causes GPU stall

� Only use this if you must
� e.g. Transforming fonts
� See GameCanvas in Lab1
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Transforms in SpriteBatch

Matrix4

� Pass to setTransformMatrix
� Applies to all images!
� Handled by the GPU but…
� Change causes GPU stall

� Only use this if you must
� e.g. Transforming fonts
� See GameCanvas in Lab1
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Positioning in LibGDX

public void draw(float dt) {

Vector2 pos = object.getPosition();

spriteBatch.begin();
spriteBatch.draw(image,pos.x,pos.y);

spriteBatch.end();
}

2D Sprite Graphics31
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Positioning in LibGDX

public void draw(float dt) {
Affine2 oTran = new Affine2();    
oTran.setToTranslation(object.getPosition());

spriteBatch.begin();
spriteBatch.draw(image,width,height,oTran);

spriteBatch.end();
}

2D Sprite Graphics32

Translate origin to 
position in world.
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Positioning in LibGDX

public void draw(float dt) {
Affine2 oTran = new Affine2();
oTran.setToTranslation(object.getPosition());
Affine2 wtran = new Affine2();
Vector2 wPos = viewWindow.getPosition();
wTran.setToTranslation(-wPos.x,-wPos.y);
oTran.mul(wTran);
spriteBatch.begin();

spriteBatch.draw(image,width,height,oTran);
spriteBatch.end();

}

2D Sprite Graphics33
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Transform Gallery

� Uniform Scale:

2D Sprite Graphics

affine.setToScaling(s,s);
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Matrix Transform Gallery

� Nonuniform Scale:

2D Sprite Graphics

affine.setToScaling(sx,sy);
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Matrix Transform Gallery

� Rotation:

2D Sprite Graphics

affine.setToRotationRad(angle);
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Matrix Transform Gallery

� Reflection:

� View as special case of Scale

2D Sprite Graphics38
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Matrix Transform Gallery

� Shear:

2D Sprite Graphics39

affine.setToShearing(a,1);
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Translation Revisited

� Translation is not a linear transform
� To be linear, T(v+w) = T(v)+T(w)
� Translation transform is T(v) = v+u
� T(v)+T(w) = (v+u)+(w+u) = v+w+2u ≠ T(v+w)

� But LibGDX treats it like one
� Affine2 transforms support translation
� Matrix4 supports matrix.set(affine)

� What is going on here?
2D Sprite Graphics
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Homogenous Coordinates

� Add an extra dimension to the calculation.
� An extra component w for vectors
� For affine transformations, can keep w = 1
� Add extra row, column to matrices (so 3×3)

� Dimension is for calculation only
� We are not in 3D-space yet
� 3D transforms need 4D vectors, 4×4 matrices 

� Matrix4 because LibGDX supports 3D

2D Sprite Graphics
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Homogenous Coordinates

� Linear transforms have dummy row and column

� Translation uses extra column

2D Sprite Graphics
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Affine Transforms Revisited

� Affine: Linear on homogenous coords
� Equal to all transforms T(v) = Mv+p
� Treat everything as matrix multiplication

� Why does this work?
� Area of mathematics called projective geometry
� Far beyond the scope of this class

� LibGDX hides all the messy details
� Just stick with Affine2 class for now

2D Sprite Graphics
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Affine Transform Gallery

2D Sprite Graphics

� Translation:
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Affine Transform Gallery
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Affine Transform Gallery

2D Sprite Graphics

� Rotation:
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Affine Transform Gallery

2D Sprite Graphics
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Compositing Transforms

rotate, then translate translate, then rotate

� In general not commutative: order matters!
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Compositing Transforms

scale, then rotate rotate, then scale

� In general not commutative: order matters!
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� Translate center to origin

� Rotate about origin

� Translate to object position
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� Break asset into parts
� Natural for joints/bodies
� Animate each separately

� Cuts down on filmstrips
� Most steps are transforms
� A lot less for you to draw
� Also better for physics

� Several tools to help you
� Example: Spriter, Spine
� Great for visualizing design

Scene Graphs57

Transforms and Modular Animation
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Spine Demo
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Spine Demo

Scene Graphs61

More on this in AI Lecture
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A Word About Scaling

� If making smaller, it drops out pixels
� Suppose T(v) = 0.5v
� (0,0) = T(0,0); pixel (0,0) colored from (0,0) in file
� (0,1) = T(0,2); pixel (0,1) colored from (0,2) in file

� But if making larger, it duplicates pixels
� Suppose T(v) = 2v
� (0,1) = T(0,0.5); pixel (0,1) colored from (0,1) in file
� (0,1) = T(0,1); pixel (0,2) colored from (0,1) in file

� This can lead to jaggies

2D Sprite Graphics62
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� Jaggies: Image is blocky

� Possible to smooth image
� Done through blurring
� In addition to transform
� Some graphic card support

� Solution for games
� Shrinking is okay
� Enlarging not (always) okay
� Make sprite large as needed

2D Sprite Graphics

Scaling and Jaggies
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Summary

� Drawing is all about coordinate systems
� Object coords: Coordinates of pixels in image file
� Screen coords: Coordinates of screen pixels

� Transforms alter coordinate systems 
� “Multiply” image by matrix to distort them
� Multiply transforms together to combine them
�Matrices are not commutative
�Later transforms go on “the right”

2D Sprite Graphics64


