
gamedesigninitiative
at cornell university

the

Memory Management

Lecture 12



gamedesigninitiative
at cornell university

the

Take-Aways for Today

�Why does memory in games matter?
� Is there a difference between PC and mobile?
� Where do consoles fit in all this?

�Do we need to worry about it in Java?
� Java has garbage collection
� Handles the difficult bits for us, right?

�What can we do in LibGDX?
Memory Management2



gamedesigninitiative
at cornell university

the

� Playstation 3
� 256 MB RAM for system
� 256 MB for graphics card

� X-Box 360
� 512 MB RAM (unified)

� Nintendo Wii
� 88 MB RAM (unified)
� 24 MB for graphics card

� iPhone/iPad
� 1 GB RAM (unified)

Memory Management

Gaming Memory (Last Generation)

3



gamedesigninitiative
at cornell university

the

� Playstation 4
� 8 GB RAM (unified)

� X-Box One (X)
� 12 GB RAM (unified)
� 9 GB for games

� Nintendo Switch
� 3 GB RAM (unified)
� 1 GB only for OS

� iPhone/iPad
� 2 GB RAM (unified)

Memory Management

Gaming Memory (Current Generation)

4



gamedesigninitiative
at cornell university

the

� Secondary storage exists
� Consoles have 500 GB HD

� iDevices have 64 GB Flash

� But access time is slow
� HDs transfer at ~160 MB/s

� Best SSD is ~500 MB/s

� Recall 16 ms per frame
� At best, can access 8 MB

� Yields uneven performance

Memory Management5

Why Not Virtual Memory?



gamedesigninitiative
at cornell university

the

� Initial heap size
� Memory app starts with
� Can get more, but stalls app
� Set with –Xms flag

� Maximum heap size
� OutOfMemory if exceed
� Set with –Xmx flag

� Defaults by RAM installed
� Initial 25% RAM (<16 MB)
� Max is 75% RAM (<2 GB)
� Need more, then set it

> java –cp game.jar GameMain

> java –cp game.jar –Xms:64m
GameMain

> java –cp game.jar –Xmx:4g
GameMain

> java –cp game.jar –Xms:64m 
–Xms:64m GameMain

Memory Management6

Aside: Java Memory



gamedesigninitiative
at cornell university

the

� Pixel color is 4 bytes
� 1 byte each for r, b, g, alpha
� More if using HDR color

� Image a 2D array of pixels
� 1280x1024 monitor size
� 5,242,880 bytes ~ 5 MB

� More if using mipmaps
� Graphic card texture feature
� Smaller versions of image
� Cached for performance
� But can double memory use

Memory Management

Memory Usage: Images

7



gamedesigninitiative
at cornell university

the

� Pixel color is 4 bytes
� 1 byte each for r, b, g, alpha
� More if using HDR color

� Image a 2D array of pixels
� 1280x1024 monitor size
� 5,242,880 bytes ~ 5 MB

� More if using mipmaps
� Graphic card texture feature
� Smaller versions of image
� Cached for performance
� But can double memory use

Memory Management

Memory Usage: Images

Original Image

MipMaps

8



gamedesigninitiative
at cornell university

the

� Formats often compressed
� JPEG, PNG, GIF
� But not always TIFF

� Uncompress to display
� Need space to uncompress
� In RAM or graphics card

� Only load when needed
� Loading is primary I/O 

operation in AAA games
� Causes “texture popping”

Memory Management

But My JPEG is only 8 KB!

9



gamedesigninitiative
at cornell university

the

� Formats often compressed
� JPEG, PNG, GIF
� But not always TIFF

� Uncompress to display
� Need space to uncompress
� In RAM or graphics card

� Only load when needed
� Loading is primary I/O 

operation in AAA games
� Causes “texture popping”

Memory Management

But My JPEG is only 8 KB!

10

Sounds have a similar problem



gamedesigninitiative
at cornell university

the

Loading Screens

Memory Management11



gamedesigninitiative
at cornell university

the

� How to load assets?
� May have a lot of assets
� May have large assets

� Loading is blocking
� Game stops until done
� Cannot draw or animate

� May need to unload
� Running out of memory
� Free something first

Memory Management12

Problems with Asset Loading

Update

Draw

Init



gamedesigninitiative
at cornell university

the

� How to load assets?
� May have a lot of assets
� May have large assets

� Loading is blocking
� Game stops until done
� Cannot draw or animate

� May need to unload
� Running out of memory
� Free something first

Memory Management13

Problems with Asset Loading

Update

Draw

Init
Blocks 

all drawing

Blocks 
next frame



gamedesigninitiative
at cornell university

the

Loading Screens

Memory Management14

Minimal animation/feedback 

while loading assets



gamedesigninitiative
at cornell university

the

Game Architecture15

Solution: Asynchronous Loader

Asset
Loader

Specify Asset

Game Thread Second Thread

Update

Draw

Notify done

Update and draw 
simple animations 
until assets loaded



gamedesigninitiative
at cornell university

the

Game Architecture16

Solution: Asynchronous Loader

Asset
Loader

Specify Asset

Game Thread Second Thread

Update

Draw

Notify done

� Also an asset manager
� Each asset given a key
� Can access asset by key
� Works like Java Map



gamedesigninitiative
at cornell university

the

Game Architecture17

Solution: Asynchronous Loader

Asset
Loader

Specify Asset

Game Thread Second Thread

Update

Draw

Notify done

� Not always a good idea
� Only one thread can I/O
� May need OpenGL utils
� …so will block drawing



gamedesigninitiative
at cornell university

the

Game Architecture18

Alternative: Iterative Loader

Asset Loader

Game Thread Asset Manager

Update

Draw

Initialize

Update

Access



gamedesigninitiative
at cornell university

the

� Uses a time budget
� Give set amount of time
� Do as much as possible
� Stop until next update

� Better for OpenGL 
� Give time to manager
� Animate with remainder
� No resource contention

� LibGDX approach
� Re-examine game labs

Game Architecture19

Alternative: Iterative Loader

Asset Loader

Asset Manager

Initialize

Update

Access



gamedesigninitiative
at cornell university

the

� Uses a time budget
� Give set amount of time
� Do as much as possible
� Stop until next update

� Better for OpenGL 
� Give time to manager
� Animate with remainder
� No resource contention

� LibGDX approach
� Re-examine game labs

Game Architecture20

Alternative: Iterative Loader

Load
Assets

Draw

Update

Budget b

Remaining
time t–b



gamedesigninitiative
at cornell university

the

Assets Beyond Images

� AAA games have a lot of 3D geometry
� Vertices for model polygons
� Physics bodies per polygon
� Scene graphs for organizing this data

� When are all these objects created?
� At load time (filling up memory)?
� Or only when they are needed?

� We need to understand memory better
Memory Management21



gamedesigninitiative
at cornell university

the

Memory Management22

Traditional Memory Organization

Program
Data

Heap

Stack

Free 
Space

Program Code
Static Variables

High Address

Low Address



gamedesigninitiative
at cornell university

the

Memory Management23

Traditional Memory Organization

Program
Data

Heap

Stack

Free 
Space

Program Code
Static Variables

Function parameters
Local variables
Return values

High Address

Low Address



gamedesigninitiative
at cornell university

the

Memory Management24

Traditional Memory Organization

Program
Data

Heap

Stack

Free 
Space

Program Code
Static Variables

Objects created via new
(e.g. Every object in Java)

Function parameters
Local variables
Return values

High Address

Low Address



gamedesigninitiative
at cornell university

the

Memory Management25

Traditional Memory Organization

Program
Data

Heap

Stack

Free 
Space

Program Code
Static Variables

Objects created via new
(e.g. Every object in Java)

Function parameters
Local variables
Return values

Easy to Handle

Easy to Handle

High Address

Low Address



gamedesigninitiative
at cornell university

the

Memory Management26

Traditional Memory Organization

Program
Data

Heap

Stack

Free 
Space

Program Code
Static Variables

Objects created via new
(e.g. Every object in Java)

Function parameters
Local variables
Return values

Easy to Handle

Easy to Handle

Problems!

High Address

Low Address



gamedesigninitiative
at cornell university

the

� It can be slower to access
� Not always contiguous
� Stacks are nicer for caches

� Garbage collection is brutal
� Old collectors would block
� New collectors are better…
� …but slower than manual

� Very bad if high churn 
� Rapid creation/deletion
� Example: Particle systems

private void handleCollision(Shell s1, Shell s2) {
// Find the axis of "collision"
Vector2 axis = new Vector2(s1.getPosition());
axis.sub(s2.getPosition()); 

…

// Compute the projections 
Vector2 temp1 = new Vector2(s2.getPosition());
temp1.sub(s1.getPosition()).nor();
Vector2 temp2 = new Vector2(s1.getPosition());
temp2.sub(s2.getPosition()).nor();

// Compute new velocities
temp1.scl(temp1.dot(s1.getVelocity()));
temp2.scl(temp2.dot(s2.getVelocity()));

// Apply to the objects 
s1.getVelocity().sub(temp1).add(temp2);
s2.getVelocity().sub(temp2).add(temp1);

}

Memory Management27

Problem with Heap Allocation



gamedesigninitiative
at cornell university

the

� It can be slower to access
� Not always contiguous
� Stacks are nicer for caches

� Garbage collection is brutal
� Old collectors would block
� New collectors are better…
� …but slower than manual

� Very bad if high churn 
� Rapid creation/deletion
� Example: Particle systems

private void handleCollision(Shell s1, Shell s2) {
// Find the axis of "collision"
Vector2 axis = new Vector2(s1.getPosition());
axis.sub(s2.getPosition()); 

…

// Compute the projections 
Vector2 temp1 = new Vector2(s2.getPosition());
temp1.sub(s1.getPosition()).nor();
Vector2 temp2 = new Vector2(s1.getPosition());
temp2.sub(s2.getPosition()).nor();

// Compute new velocities
temp1.scl(temp1.dot(s1.getVelocity()));
temp2.scl(temp2.dot(s2.getVelocity()));

// Apply to the objects 
s1.getVelocity().sub(temp1).add(temp2);
s2.getVelocity().sub(temp2).add(temp1);

}

Memory Management28

Problem with Heap Allocation

Created/deleted every frame



gamedesigninitiative
at cornell university

the

� C++ can put objs on stack
� Object deleted at end of call
� No GC computation at all
� Good for short-life objects

� Java can approximate this
� Checks if local to function
� If so, will delete it

� But not a perfect solution
� Can never return object
� Init has hidden costs

void getCollides(Shell s1, Shell s2) {
// Find collision axis
Vector2 axis = new 

Vector2(s1.getPosition());
axis.sub(s2.getPosition()); 
axis.nor();
axis.scale(s1.getRadius());

// Find collision location
Vector2 spot = new 

Vector2(s1.getPosition());
spot.add(axis);

return spot;
}

Memory Management29

Aside: Stack Based Allocation



gamedesigninitiative
at cornell university

the

� C++ can put objs on stack
� Object deleted at end of call
� No GC computation at all
� Good for short-life objects

� Java can approximate this
� Checks if local to function
� If so, will delete it

� But not a perfect solution
� Can never return object
� Init has hidden costs

void getCollides(Shell s1, Shell s2) {
// Find collision axis
Vector2 axis = new 

Vector2(s1.getPosition());
axis.sub(s2.getPosition()); 
axis.nor();
axis.scale(s1.getRadius());

// Find collision location
Vector2 spot = new 

Vector2(s1.getPosition());
spot.add(axis);

return spot;
}

Memory Management30

Aside: Stack Based Allocation

Deleted

Not 
Deleted



gamedesigninitiative
at cornell university

the

Aside: Java Garbage Collection

� Parallel Garbage Collector (The Default)
� Freezes your application when it collects

� Serial Garbage Collector (-XX:+UseSerialGC)
� Like PGC but better for simple programs

� CMS Garbage Collector (-XX:+UseParNewGC)
� Concurrent mark-and-sweep rarely freezes app

� G1 Garbage Collector (-XX:+UseG1GC)
� Even less app freezing at cost of large heap size

Memory Management31



gamedesigninitiative
at cornell university

the

Aside: Java Garbage Collection

� Parallel Garbage Collector (The Default)
� Freezes your application when it collects

� Serial Garbage Collector (-XX:+UseSerialGC)
� Like PGC but better for simple programs

� CMS Garbage Collector (-XX:+UseParNewGC)
� Concurrent mark-and-sweep rarely freezes app

� G1 Garbage Collector (-XX:+UseG1GC)
� Even less app freezing at cost of large heap size

Memory Management32

Andrew Myer’s preferred GC 
for high performance Java



gamedesigninitiative
at cornell university

the

Memory Management33

Memory Organization and Games

Update

Draw

Intra-Frame
Memory

Recovered
each frame

Inter-Frame
Memory

Carries over 
across frame
boundaries



gamedesigninitiative
at cornell university

the

Memory Management34

Memory Organization and Games

Update

Draw

Intra-Frame
Memory

Recovered
each frame

Inter-Frame
Memory

Carries over 
across frame
boundaries

Heap or Stack?
Does it matter?



gamedesigninitiative
at cornell university

the

Intra-Frame

� Local computation
� Local variables

(managed by compiler)
� Temporary objects

(not necessarily managed)

� Transient data structures
� Built at the start of update
� Used to process update
� Can be deleted at end

Memory Management35

Distinguishing Data Types

Inter-Frame

� Game state
� Model instances
� Controller state
� View state and caches

� Long-term data structures
� Built at start/during frame
� Lasts for multiple frames
� May adjust to data changes



gamedesigninitiative
at cornell university

the

Intra-Frame

� Local computation
� Local variables

(managed by compiler)
� Temporary objects

(not necessarily managed)

� Transient data structures
� Built at the start of update
� Used to process update
� Can be deleted at end

Memory Management36

Distinguishing Data Types

Inter-Frame

� Game state
� Model instances
� Controller state
� View state and caches

� Long-term data structures
� Built at start/during frame
� Lasts for multiple frames
� May adjust to data changes

Local Variables
Object Fields



gamedesigninitiative
at cornell university

the

Intra-Frame

� Local computation
� Local variables

(managed by compiler)
� Temporary objects

(not necessarily managed)

� Transient data structures
� Built at the start of update
� Used to process update
� Can be deleted at end

Memory Management37

Distinguishing Data Types

Inter-Frame

� Game state
� Model instances
� Controller state
� View state and caches

� Long-term data structures
� Built at start/during frame
� Lasts for multiple frames
� May adjust to data changes

Local Variables
Object Fields

e.g. Collisions
e.g. Pathfinding



gamedesigninitiative
at cornell university

the

Intra-Frame

� Does not need to be paged
� Drop the latest frame
� Restart on frame boundary

� Want size reasonably fixed
� Local variables always are
� Limited # of allocations
� Limit new inside loops

� Make use of cached objects
� Requires careful planning

Memory Management38

Handling Game Memory

Inter-Frame

� Potential to be paged
� Defines current game state
� May just want level start

� Size is more flexible
� No. of objects is variable
� Subsystems may turn on/off
� User settings may affect

� Preallocate as possible
� Recycle with free lists



gamedesigninitiative
at cornell university

the

� Limit new to constructors
� Identify the object owner
� Allocate in owner constructor

� Example: cached objects
� Look at what algorithm needs
� Allocate all necessary objects
� Algorithm just sets the cache

� Problem: readability
� Naming is key to readability
� But new names = new objects
� Make good use of comments

Memory Management39

Rule of Thumb: Limiting new

Model Model Model

SubcontrollerSubcontroller

Root
Controller



gamedesigninitiative
at cornell university

the

� Limit new to constructors
� Identify the object owner
� Allocate in owner constructor

� Example: cached objects
� Look at what algorithm needs
� Allocate all necessary objects
� Algorithm just sets the cache

� Problem: readability
� Naming is key to readability
� But new names = new objects
� Make good use of comments

Memory Management40

Model Model Model

SubcontrollerSubcontroller

Root
Controller

allocate

Rule of Thumb: Limiting new



gamedesigninitiative
at cornell university

the

� Idea: Allocate before need
� Compute maximum needed
� Create a list of objects
� Allocate contents at start
� Pull from list when neeeded

� Problem: Running out
� Eventually at end of list
� Want to reuse older objects
� Easy if deletion is FIFO
� But what if it isn’t?

� Motivation for free list

// Allocate all of the particles
Particle[] list =new Particle[CAP];
for(int ii = 0; ii < CAP; ii++) {

list[ii] = new Particle();
}

// Keep track of next particle
int next = 0;

…

// Need to “allocate” particle
Particle p = list[next++];
p.set(…);

Memory Management41

Object Preallocation



gamedesigninitiative
at cornell university

the

� Create an object queue
� Separate from preallocation
� Stores objects when “freed”

� To allocate an object…
� Look at front of free list
� If object there take it
� Otherwise make new object

� Preallocation unnecessary
� Queue wins in long term
� Main performance hit is 

garbage collector

// Free the new particle
freelist.push(p);

…

// Allocate a new particle
Particle q;

if (!freelist.isEmpty()) {
q = freelist.pop();

} else {
q = new Particle();

}

q.set(…)

Memory Management42

Free Lists



gamedesigninitiative
at cornell university

the

Pool<T>

� public void free(T obj);
� Add an object to free list

� public T obtain(); 
� Use this in place of new
� If object on free list, use it
� Otherwise make new object

� public T newObject();
� Rule to create a new object
� Could be preallocated

Memory Management43

LibGDX Support: Pool

Pool.Poolable

� public void reset();
� Erases the object contents
� Used when object freed

� Must be implemented by T
� Parameter free constructors
� Set contents with initializers

� See MemoryPool demo
� Also PooledList in Lab 4



gamedesigninitiative
at cornell university

the

Summary

� Memory usage is always an issue in games
� Uncompressed images are quite large
� Particularly a problem on mobile devices

� Asset loading must be balanced with animation
� LibGDX uses an incremental approach

� Limit calls to new in your animation frames
� Intra-frame objects: cached objects
� Inter-frame objects: free lists

Memory Management44


