
CS 3110 Spring 2016
Problem Set 3
Version 3 (last modified March 17, 2016)

Overview

In the previous problem set, you implemented rational numbers and their arithmetic opera-
tions. For this assignment, you will use this implementation to build the Real numbers. We
will be using the definitions from Foundations of Constructive Analysis by Errett Bishop
namely chapter 2. While we aim to keep this writeup self-contained, it is also a good idea
to use this text to supplement your understanding of real numbers. This assignment must
be done individually.

Objectives

• Gain mathematical maturity and an intuitive understanding of the number system

• Write Ocaml code that makes extensive use of Modules, functors, and signatures.

• Implement the constructive Reals and use them to solve interesting geometrical prob-
lems

Recommended reading

The following supplementary materials may be helpful in completing this assignment:

• Lectures 6 7

• The CS 3110 style guide

• Real World OCaml, Chapter 4,9,10

• Constructive Analysis, Chapter 2

What to turn in

Exercises marked [code] should be placed in ps3.ml and rationals.ml, and will be graded
automatically. Exercises marked [written] should be placed in written.txt or written.pdf
and will be graded by hand.
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http://www.cs.cornell.edu/courses/cs3110/2016sp/lectures/6/lect6_3110.pdf
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http://www.cs.cornell.edu/courses/cs3110/2016sp/handouts/style.html
https://realworldocaml.org/v1/en/html/index.html
http://nuprl.org/MathLibrary/ConstructiveAnalysis/


Compiling Instructions

We will compile your code using the following command,

cs3110 compile -l nums ps3.ml

the -l flag tells the compiler to include the nums library which contains the Big int module
we need to use.

Warm-up

Exercise 1.

[code] Let’s first extend the rational module to include some useful functions. Note that
we are now using Big Ints as opposed to regular ints. The reason for this is that a 32-bit
integer will surely overflow and cause our approximations to be incorrect. A list of all its
functions can be found here: http://caml.inria.fr/pub/docs/manual-ocaml/libref/

Big_int.html. Look over the Big int module and get familiar with it, we will be using this
module extensively for this problem set.

Style tip: There is a compact syntax for a local open: M.(e) evalu-
ates e in an environment with all of the definitions of M available, for
example, we can write Big int.(add big int zero big int zero big int in-
stead of Big int.add big int Big int.zero big int Big int int.zero big int.
Take advantage of this!

TODO: Implement the max : t-> t-> t and ceil: t-> t functions in rationals.ml file
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The Real Number System

The first proof of the existence of irrational numbers is often attributed to Pythagoras. It
is believed that he discovered them by studying pentagrams. However, It wasn’t until the
work of Georg Cantor in 1871 where a rigorous definition of the real numbers was first given.
Calculus itself develop without a rigorous definition of real numbers available. Since then,
multiple definitions of real numbers have been proposed. In this problem set, we will work
with the definitions provided by Errett Bishop.
Before discussing the construction of the real numbers it is important to understand the task
at hand and what the set of real numbers should contain. First, the real numbers should
include all the rational numbers and have the + and ∗ operators. Namely, the real number
system that we construct should form a field. We say that a set along with two operations
(+, ∗) is a field if it satisfies the following properties,

1. Closure under addition and multiplication. Consider a, b ∈ F where F is a field, then
we know that a+ b ∈ F and a ∗ b ∈ F . Intuitively speaking, if we are operating within
a field, we should never get an element that in not included within that field

2. Associativity under addition and multiplication. Let a, b, c ∈ F then a + (b + c) =
(a+ b) + c and a ∗ (b ∗ c) = (a ∗ b) ∗ c.

3. Commutativity of addition and multiplication. Let a, b ∈ F then a + b = b + a and
a ∗ b = b ∗ a

4. Existence of the additive identity. There exists the element 0 such that ∀a, a + 0 =
0 + a = a

5. Existence of the multiplicative identity. There exists an element 1 such that ∀a, a∗1 =
1 ∗ a = a

6. Existence of additive inverse. For every element a there exists an element −a such that
a+ (−a) = 0

7. Existence of the multiplicative inverse. For every element a 6= 0 there exists an element
a−1 such that a ∗ a−1 = 1

8. Distributivity, For every element a, b, c, a ∗ (b+ c) = a ∗ b+ a ∗ c.

A correct construction of the Real number system must satisfy all of these axioms. In this
problem set you are not expected to prove anything about the Reals but we expect that you
have a basic understanding of their definition, and the operations that we define.

Exercise 2: Definition of Real Numbers.

[code]As you learned in class, a real number can be defined as an infinite sequence of rational
numbers getting closer and closer together. The formal given to us by Bishop of a constructive
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real numbers is as follows.
Definition: Let, {xi} denote an infinite sequence of rational numbers (eg, {q1, q2, q3, ...}).
We say that {xi} is regular if for all m,n ∈ N,

|xn − xm| ≤
1

n
+

1

m

We say that a real number r ∈ R is regular sequence of rational numbers {xi}, i.e r ≡ {xi}

When defining addition and multiplication, it is important that this definition holds. This
definition of real numbers motivates our type definition for our Real module. Namely, a real
number is nothing more than a function from the natural numbers to the rational numbers,
i.e r : N→ Q.
TODO: [Code](Update March 17: We now give you this type in the realease code so
you need not change it. This is because we need your . file to match our .mli enjoy your
freebie!)Given this definition of real, give a definition for the type t in the MakeReal functor
in ps3.ml.

Exercise 3: Rationals as Reals, Multiplicative and Additive Identi-
ties.

[code]Surely, the field of Reals needs to contain rational numbers as well. This is done in
the simplest way; we take a constant sequence. In other words, if p

q
∈ R, then p

q
≡ {p

q
}. The

proof that this sequence satisfies the definition of rationals is trivial.
TODO: Implement the make_real_from_rational: Rat.t -> t, one: t, and zero: t

functions in the MakeReal functor in ps3.ml.

Exercise 4: Definition of Addition, and Negation.

[code]Addition and Negation are done in the simplest way.
Definition: Let x = {xn} and y = {yn} be two real numbers. Then x + y = {x2n + y2n}.
We claim that by adding real numbers this way will make the the sequence a valid sequence.
Indeed, let z ≡ x+ y, then

|zn − zm| = |x2n + y2n − x2m − y2m|

≤ |x2n − x2m|+ |y2n − y2m|

≤ 1

2n
+

1

2m
+

1

2n
+

1

2m
=

1

n
+

1

m

Definition: Let x ≡ {xn} be a real number, its additive inverse is then given by −x ≡
{−xn}. The proof of this is trivial. And we see that x+ (−x) = {x2n − x2n} = {0}.
TODO: Given the above definitions, implement the add: t-> t -> t and negate: t-> t

function in the MakeReal functor.
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Exercise 5: Defining Multiplication.

[code]Defining multiplication is a little trickier. The reason is that defining multiplication the
naive way, i.e x∗ y = {xnyn} will break the regularity requirement. To define multiplication,
we need an upper bound. That is for every x ∈ R we need some number Kx such that
∀n ∈ N

|xn| < Kx

Luckily this number can be found by finding the least integer which is greater than |x1|+ 2.
We call Kx the canonical bound for x. Using this value, we can now define multiplication
Definition: Let x ≡ {xn} and y ≡ {yn} be real numbers with canonical bounds Kx, Ky

respectively. Let k = max(Kx, Ky). Then,

x ∗ y = {x2kny2kn}

We claim that this definition of multiplication will satisfy the regularity of the sequence.
Indeed, let x, y be real numbers and let z = x ∗ y, then

|zn − zm| = |x2kny2kn − x2kmy2km| = |x2kny2kn − x2kny2km + x2kny2km − x2kmy2km|

≤ |x2kn||y2kn − y2km|+ |y2km||x2kn − x2km|

≤ k(
1

2kn
+

1

2km
) + k(

1

2km
+

1

2kn
) =

1

m
+

1

n
This shows that the regularity requirement is satisfied by multiplication.
TODO: Given the above definition of multiplication, implement the multiply: t -> t -> t

function in the MakeReal functor

Exercise 6: Defining Inverses.

[code]Defining inverses is perhaps the trickiest operation. The reason for this is that the
naive implementation x−1 ≡ {x−1} does not account for the fact that an element in the
sequence might be zero. Luckily it a known fact that if x 6= 0 then it will have at most a
finite number of zeroes in its sequence. In other words, there exists a point in the sequence
n such that ∀m > n.

|xm| ≥ N−1

After some point every element in the sequence is bounded from below. Our challenge is to
find that N . First, consider the following definition of a positive number.
Definition: A real number x ≡ {xn} is said to be positive if

xn > n−1

For some n. Now we can prove that positive real numbers are bounded from below.
Therefore, for every positive real number x we can find some n such that the definition holds.
We claim that if we let N ∈ Z satisfy,

2

N
≤ xn − n−1
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then ∀m ≥ N ,
xm ≥ N−1

After finding N we are now able to define inverses as follows
Definition: Let x be a non-zero real number. There exists a positive integer N with
|xm| ≥ N−1 for m ≥ N . Then we define the inverser y = x−1,

yn = (xN3)−1 (n < N)

yn = (xnN2)−1 (n ≥ N)

We assert that this construction will provide a regular sequence and thus is a well-defined
real number. We recommend reading chapter 2 of Erett Bishops book for a full proof.
TODO: Given the above definition of inverse, implement the inverse: t -> t function
the MakeReal functor. (Hint: start by finding n and N).

Implementing the Square root, cosine, and exponential

functions

Congratulations! Up to this point, you have built from scratch a powerful real number
system supporting arbitrary ε = 1/n precision. To fully appreciate the awesomeness of this
module, in this part you will implement some useful functions on Reals, which will give you
arbitrarily precise representation of the familiar

√
2, π and e.

Exercise 7: Square Root of Reals.

[code]Let’s start with the easy one. Consider a nonnegative real x ≡ {xn}, i.e. ∀n > 0, xn ≥
−n−1. This constraint is just to ensure the square root of x is indeed real.
Now the intuition of taking square root of a sequence of rationals is naturally to take square
root of each element individually, but we don’t know how to efficiently do that for an arbitrary
rational. Fortunately we do know how to find the square root of a non-negative integer.
In fact as you might have seen in class, finding the int-sqrt of an integer n can be done
in O(logn) time. Put more formally, given n ∈ N, m = isqrt(n) if m ∈ N,m2 ≤ n and
(m+ 1)2 > n.
TODO: Implement the helper function isqrt in sqrt.
To use isqrt, we need to approximate xn by integers. This can be done by rewriting

xn = pn/qn ≈ an/2n for some an ∈ Z

an can be solved by the following formula. Note that here the division is integer division.

an = (pn ∗ 2n)/qn

Now let’s define y ≡ yn by
yn = isqrt(an ∗ 2n)/2n
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It’s easy to verify that y2n approximates xn by only the errors incurred by integer square
root. Note that here there is indeed some caveats: we have actually introduced two types of
errors. The error in approximating xn with an and the error in approximating the integer
square root of an. Fortunately both these errors can be simultaneously bound and yn here is
still regular, and in fact y is the square root of x. For those who are interested in the proof,
please consult Mark Bickford’s ”Constructive Analysis and Experimental Mathematics using
the NuPrl Proof Assistant”.
TODO: Implement sqrt: Reals.t -> Reals.t

Now you can plug in some numbers built from rationals into your sqrt functions and approx-
imate

√
2 to any precision you like!

Exercise 8: Cosine Function.

[code]From our previous success with root function, an initial attempt for finding the cosine
value of any given real x might be to approximate the integer cosine value for each xn.
Unfortunately unlike roots, cosine cannot be easily approximated for arbitrary integers. So
our approach here is a more general and powerful one, Taylor expansion.
Recall that the taylor expansion for cosine is the following:

cos(x) =
∞∑
n=1

(−1)n−1
x2n−2

(2n− 2)!

Note here the difference from conventional expansion due to the shift of index. The biggest
difficulty here is that this is an infinite series, and for computation we can only approximate
this series with its partial sum, which introduces yet another error that needs to be bound.
Since the mathematics here is only a means and not an end, we will just introduce a technique
commonly used in real analysis for construction of sequence without proving its correctness.
Assume y = cos(x), we shall define yn ∈ Q through diagonalization. Namely to approxi-
mate yn for some n, we take the partial sum of cos() up to the nth term and plug in the
approximation xn of x for computation.

yn =
n∑

k=1

(−1)k−1
x2k−2n

(2k − 2)!

We claim without proof here that thus constructed sequence is in reals.
TODO: Implement cos:Reals.t -> Reals.t

Note: Through a similar procedure we can define the function arctan(), which will give us
π with infinite precision!

Exercise 9: Exponential Function.

[code]The procedure for approximating the exponential function is exactly the same as for
cosine, and you already have the factorial function from implementing cosine. The Taylor
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expansion is given as follows:

ex =
∞∑
n=1

xn−1

(n− 1)!

TODO: Implement exp:Reals.t -> Reals.t

Logic

Exercise 10.

[written]Expand the following abbreviated logical formulas into their primitive definitions,
e.g. ∼ α to α → V oid. Then give a program in the corresponding type and comment on
how it provides evidence for the “computational truth” of the formula.

1. ∼ (α ∨ β)⇒∼α& ∼β

2. (α⇒ γ) & (β ⇒ γ)⇒ (α ∨ β)⇒ γ

3. (α⇒ β)⇒ (∼ β ⇒∼ α)

4. The questions below are optional, they are a bit tricky but fun!

* ∀x : int.α(x)⇒ α(17)

* ∼ α(17)⇒∼ ∀x : int.α(x)

* ∼∼ (α ∨ ∼ α)

Comments

[written] At the end of the file, please include any comments you have about the problem
set, or about your implementation. This would be a good place to document any extra
Karma problems that you did (see below), to list any problems with your submission that
you weren’t able to fix, or to give us general feedback about the problem set.

Release files

The accompanying release file ps3.zip contains the following files:

• writeup.pdf is this file.

• release/ps3.ml, written.txt and rationals.ml are templates for you to fill in and
submit.

• ps3.mli contains the interface and documentation for the functions that you will
implement in ps3.ml
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