CS 3110 Spring 2015
Problem Set 1
Version 2 (last modified February 5, 2016)

Overview

This assignment will take you through a sequence of small problems that will introduce you
to writing (good) functional programs in OCaml. This assignment must be done individually.

Objectives

e Gain familiarity with basic OCaml features such as lists, tuples, functions, pattern
matching, and data types.z

e Practice writing programs in the functional style using immutable data, recursion, and
higher-order functions.

e Introduce the basic features of the OCaml type system.

e [llustrate the impact of code style on readability, correctness, and maintainability.

Recommended reading

The following supplementary materials may be helpful in completing this assignment:

e Lectures 1 2 3
e The CS 3110 style guide

e The OCaml tutorial

Introduction to Objective Caml

Real World OCaml, Chapters 1-3

What to turn in

Exercises marked [code] should be placed in ps1.ml and will be graded automatically. Exer-
cises marked [written] should be placed in written.txt or written.pdf and will be graded
by hand.

http://www.cs.cornell.edu/courses/cs3110/2016sp/lectures/1/lecture1_3110.pdf
http://www.cs.cornell.edu/courses/cs3110/2016sp/lectures/2/lecture2_3110.pdf
http://www.cs.cornell.edu/courses/cs3110/2016sp/lectures/3/CS3110-2016sp-Lecture3.pdf
http://www.cs.cornell.edu/courses/cs3110/2016sp/handouts/style.html
http://ocaml.org/learn/tutorials/
http://www.cs.caltech.edu/courses/cs134/cs134b/book.pdf
https://realworldocaml.org/v1/en/html/index.html

Warm-up
Exercise 1.

[written| Identify the types and values of the following expressions. If the expressions are
not well typed, briefly explain why not.

Note: Although the toplevel will give you the answers to these ques-
tions, we recommend that you try them on your own before checking
them against the toplevel. Figuring out types is a good skill to have
for reading OCaml code and for passing 3110 exams.

(a) 3 + 5 (f) fun a (b, ¢c) > ac (b ¢)
(b) 40 +. 2 (g) ()

(¢c) ("zardoz", 3+5, true) (h) () () 2 [

(d) ["zardoz"; 3+5; truel] (i) if 1 then true else false
(e) fun x y -> if x then y else x (j) fun x > fun y > x " y

Exercise 2.

[written] Give expressions having the following types.

(a) int -> int -> int (d) ’a -> ’a
(b) (int -> int) -> int (e) ’a => ’b > ’a
(c) int -> (int -> int) (f) Ca * b => ’c) > (Ca => ’b -> ’¢)

Code Style

Exercise 3.

The following function executes correctly, but was written with poor style. Rewrite it with
better style. Please consult the CS 3110 style guide.

let amm rjr shh =

let mcl pdz =

let rec rrs skc snb =

match skc with

[] -> snb

| tcw::tiw -> rrs tiw (tcw::snb) in
rrs pdz [] in

let hck mhk =

let rec aab acc akd =

match acc with [] -> akd

| asg::asw -> aab asw (akd @ asg) in
aab mhk [] in

let atn awl blc =

let rec cy gjm hmd hme =

match hmd with

[] -> hme

| irk::jag -> cy gjm jag ((gjm irk) :: hme) in
mcl (cy awl blc []) in

let jdh je jl = hck (atn je jl) in
jdh rjr shh

Examples

The expression

fun x ->
match 3110 with
| 3110 -> if x=true then "cs" else "3110"
| _ -> "2110"

This will become

fun x -> if x then "cs" else "3110"

http://www.cs.cornell.edu/courses/cs3110/2016sp/handouts/style.html

OCaml programming with Ints

Exercise 4.

(a)

[code] Complete the implementation of the fib function, where fib n returns the n'”
Fibonacci number. Indexing for the numbers begin at 0, and we use the seed values 0
and 1. Thus the 0"* through the 4"* Fibonacci numbers are 0,1,1,2,3,

If n < 0, the behavior is undefined.

let rec fib (n: int) : int =

[code] A naive implementation of the Fibonacci function above runs in time O(2"), which
is less than ideal. Now let’s write an improved Fibonacci function acc_fib that runs in

O(n):

let improved_fib (n: int) : int =
let rec helper (n’: int) (a: int) (b: int) =
(¥ complete this function *)
in
helper n 0 1

Here a and b are both accumulators where a represents the n — 2" Fibonacci number
and b represents the n — 1** Fibonaaci number for n > 1.

Exercise 5.

Recall the rational numbers, which intuitively are fractions with integer components. We
can represent rationals as ordered pairs of type int * int, where the first component is the
numerator and the second component is the denominator. We consider any ordered pair of
type int * int as a valid rational except for those pairs with a 0 in the second component,
as we cannot have 0 in the denominator.

(a)

(b)

[code] Tmplement the ged function, which computes the greatest common denominator
of two integers.

let rec gcd (a: int) (b: int) : int =

[code] Implement the equals function, which takes two rationals x and y and returns
true if and only if they represent the same rational number. You may assume inputs
are valid rationals.

let equals (x: int * int) (y: int * int) : bool =

(c) [code] Implement the lowest_terms function, which takes a rational x and returns the
rational y such that equals x y = true and y is in lowest terms. You may assume
inputs are valid rationals.

let lowest_terms (x: int * int) : int * int =

(d) [code] Implement the plus and mult functions, which denote the addition and multipli-
cation operations over rationals, respectively. The outputs of these functions must be
rationals in lowest terms. You may assume inputs are valid rationals.

let plus (x: int * int) (y: int * int) : int * int =

let mult (x: int * int) (y: int * int) : int * int

Exercise 6.

An unlabeled binary tree is a binary tree with no values associated with any of its nodes.
Thus, we do not differentiate between internal nodes with values and leaves with no values.
For this problem, we are only concerned with the structure of binary trees.

Implement the count_bin_trees function, which returns the number of structurally unique
unlabelled binary trees with n nodes. We define count_bin_trees 0 = 1. It is also clear
that count_bin_trees 1 = 1. See figures (1) and (2) for the structurally unique unlabelled
binary trees for 2 and 3 nodes. The behavior of the function is undefined for negative inputs.

let rec count_bin_trees (n: int) : int =

Hint: Any binary tree necessarily has a root. For the case of n > 1,
fix the root of the tree, and first consider the possible sizes of the left
subtree (or symmetrically the right subtree).

N

Figure 1: The possible unlabeled binary trees with n = 2 nodes.

AP

Figure 2: The possible unlabeled binary trees with n = 3 nodes.

OCaml programming with Lists

You may NOT use any List module functions (except for cons (::) and concat (Q))
Exercise 7.

(a) [code] Implement the following function:

’a

-> bool) (1:

’a list)

’a list

let rec filter (predicate:

filter takes two inputs: a function predicate that takes an element of the list and
returns a boolean, and a list 1 of values. The filter function should return a list of
elements such that satisfies predicate. For example:

-> x mod 3 = 2) [1; 2; 5];;

[2; 4]

filter (fun x
- : 1int list =

3; 4;

filter (fun x -> String.length x <= 4) ["cs"; "3110"; "zard

- : string list = ["cs"; "3110"]

The order of the output list does not matter.

[code] Implement the following function:

let rec pair_filter (compare: ’a -> ’a -> ’a) (1: ’a list)

pair_filter takes a function compare that returns one of two values, and a list 1 of
values. The pair_filter function should break 1 into adjacent pairs, and apply compare
to each pair. It should return a list containing the resulting values. For example:

oz"];;

’a list

pair_filter max [0; 5; 7; 2; 3; -10]
J [max 0 5; max 7 2; max 3 -10]
1 [5; 7; 3]

If the input list has odd length, then the last element should be returned as well. For
example,

pair_filter min [1; 2; 3; 4; 5]
J [min 1 2; min 3 4; 5]
{ [1; 3; 5]
[code] Implement the following function:
let rec powerset (1l: ’a list) ’a list 1list =

powerset takes a set S represented as a list 1 and returns the powerset of S. Recall
that sets have no duplicates and are unordered, and you may assume that input lists are
valid representations of a set. Also recall that the powerset of a set S is the set of all
subsets of S. For example,

powerset [1; 2; 3];;
- : int 1list list = [[]; [1]1; ([2]; [3]; [1;2]; [1;31; [2;3];

powerset [];;
- : ’a list list = [[]]

Your function must output a valid representation of a set.

Higher Order Functions

Exercise 8.

(a)

[code] Implement the following function:

let compose_2 (f: ’a -> ’a) (g: ’a -> a’) : (’a -> ’a) =

compose_2 f g is equivalent to the composition f o g. Recall that (fog)(x) = f(g(x)).

[code] Implement the following function:

let rec compose_n (l: (’a -> ’a) list) : (Pa -> ’a) =

compose_n takes in a list 1 of functions [fi; fo; ...; f] and returns fy o foo...o f,. If the
list 1 is empty, compose_n returns the identity function. For example:

let succ n n + 1 in
let plus_3 = compose_n [succ; succ; succ] in
plus_3 O

- : int = 3

let succ n n + 1 in
let mult_two n n *x 2 in
let two_n_plus_one = compose_n [succ; mult_two] in
two_n_plus_one 4

- : int = 9

let identity = compose_n [] in
identity "=zardoz"
- : string = "zardoz"

[1;2;3]]

(c) [karmal]
Note that karma is completely optional and will not affect your grade in any way.

[code] Implement the following function:

let rec list_to_func (1: ’a list) : (int =-> ’a option) =

list_to_func takes in a list 1 of values [x_1; x_2; ...; x_n] and returns a function
f where £ i returns Some x_i. If i < O orn < i, f i returns None. For example:

let get_n = list_to_func [1; 3; 5; 7] in
get_n 2
- : int option = Some 5
let get_n = list_to_func ["cs"; "3110"; "zardoz"] in
get_n b5
- : string option = None
Comments

[written] At the end of the file, please include any comments you have about the problem
set, or about your implementation. This would be a good place to document any extra
Karma problems that you did (see below), to list any problems with your submission that
you weren’t able to fix, or to give us general feedback about the problem set.

Release files

The accompanying release file ps1.zip contains the following files:

e writeup.pdf is this file.
e release/psl.ml and written.txt are templates for you to fill in and submit.

e psl.mli contains the interface and documentation for the functions that you will
implement in ps1.ml

