CS 3110

Lecture 8: Closures

Prof. Clarkson
Spring 2015

Today’s music: Selections from Doctor Who soundtracks, series 5-7



Review

Dynamic semantics:
* how expressions evaluate

e substitution model: substitute value for variable in
let expressions, function calls, etc.

* environment model: maintain a data structure that
binds variables to values

Today:



Question #1

Have your registered your iClicker for this semester?
A. Oops..

B. Not sure

iClicker Polling Registration

Welcome Michael Clarkson ...

You can use this form to register your iClicker polling device for use in Cornell classes
C YeS utilizing polling technologies. *Note that not all courses make use of this registration system.
[ ]

You may return to this form to update your iClicker registration at anytime.

Registered on: Last Updated:
02/05/2015 never

enter your iClicker device-id:

|  Submit |

Click 2/ for help identifying the iClicker device-id

https://atcsupport.cit.cornell.edu/pollsrvc/




iClicker data

* What gets recorded: "serial number XYZ voted
with button W"”

— so the raw data is all there...

* What we need to give you credit for those votes:
map from NetlID to serial numbers

* Registration is what gives us that map!

* Suggestion: write down all the serial numbers
you use so that even if you lose remote, we can
give you credit



Review: the core of OCaml

Essential sublanguage of OCaml:

e = v | Ce | (el, ..., en) | el + e2
x | el e2
let x = el in e2
match e0 with pi -> ei

\'4 =c | fun x ->e | Cv | (v1l, ..., vn)

In recitation, pared this down even further to tuples/datatypes
with only two components/constructors



Match expressions

To evaluate
match e0 with
pl -> el
I
| pn -> en
In environment env
Evaluate expression e0 to value vO in env
Find the first pattern pi that matches vO0
That match produces new bindings b
e, v0 = pi{vl/x1}{v2/x2}...{vn/xn}
andb = {x1l=v1l, x2=v2, ..., xn=vn}
Evaluate expression ei to value vi in environment env+b
Return vi



Match expression rule

env :: match e0 with pi -> ei || vi
if env :: e0 || vO
and pi is the first pattern to match vO

and that match produces bindings b

andenv+b :: ei || vi

Example:

{} :: match 42 with x -> x || 42
because {} :: 42 || 42

and x is the first pattern that matches 42
and that match produces binding {x=42}
and {x=42} :: x || 42



Progress

e ::= v | Ce | (el, ., en) |
x | el e2
let x = el in e2

match e0 with pi -> ei

v ::=c¢c | fun x -> e | C v |

(v1,

el + e2



Review: function values

Anonymous functions fun x-> e are values

env :: (fun x -> e) || (fun x -> e)



Review: let expressions

To evaluate let x = el in e2 inenvironment env

Evaluate the binding expression el to a value v1 in
environment env

env :: el || vl
Extend the environment to bind x to v1
env’ = env + {x=vl}

(newer bindings temporarily shadow older bindings)

Evaluate the body expression e2 to a value v2 in
environment env’

env’/’ :: e2 || v2
Return v2



Review: let vs. application

These two expressions mean the same thing;
* let x = el in e2
* (fun x -> e2) el



Function application v1.0

To evaluate el e2 inenvironment env

Evaluate el to a value v1 in environment env
env :: el || vl
Note that v1 must be a function value fun x -> e
because function application type checks

Evaluate e2 to a value v2 in environment env
env :: e2 || v2

Extend environment to bind formal parameter x to actual value v2
env’/’ = env + {x=v2}

Evaluate body e to a value v in environment env’
env/ :: e || v

Return v



Function application rule v1.0

env :: el e2 || v
fenv :: el || (fun x -> e)
andenv :: e2 || v2
andenv+{x=v2} :: e || v
Example:
{} :: (fun x -> x) 1 || 1
b/c{} :: (fun x -> x) || (fun x -> x)
and {} :: 1 || 1

and {}+{x=1} :: x || 1



Hard example

let x = 1 in

let £f = fun y -> x 1n
let x = 2 in
£ O

What does our dynamic semantics say it evaluates to?
What does OCaml say?
What do YOU say?



Question #2

What do you think this expression should evaluate to?
let x = 1 1in
let £f = fun y -> x 1in
let x = 2 in
£ 0



Hard example: OCaml

What does OCaml say this evaluates to?
let x =1 in
let £f = fun y -> x 1in
let x = 2 1in
£fO0



Hard example: our semantics

What does our semantics say?
let x =1 in
let £ = fun y -> x in
let x = 2 in
£fO0

{x=2,f=(fun y->x)} :: £ 0 || 2?7
1. Evaluate £ toavalue, i.e, fun y->x
2. Evaluate O to a value, i.e, O

3. Extend environment to map parameter:
{x=2, f=(fun y->x), y=0}

4.  Evaluate body x in that environment
5. Return 2



Why different answers?

Two different rules for variable scope:
* Rule of dynamic scope (our semantics so far)

* Rule of lexical scope (OCaml)



Dynamic scope

Rule of dynamic scope: The body of a function is
evaluated in the current dynamic environment at
the time the function is called, not the old
dynamic environment that existed at the time the
function was defined.

— Causes our semantics to use latest binding of x

— Thus return 2



Lexical scope

Rule of lexical scope: The body of a function is
evaluated in the old dynamic environment that
existed at the time the function was defined, not
the current environment when the function is
called.

— Causes OCaml to use earlier binding of x

— Thus return 1



Lexical scope

Rule of o7 .
evaluat e g —hat
existed 2 | | e
the cur
called.
— Cause

— Thus



Scope

Rule of dynamic scope: The body of a function is evaluated in the current
dynamic environment at the time the function is called, not the old
dynamic environment that existed at the time the function was defined.

—  Causes our semantics to use latest binding of x
— Thusreturn 2

Rule of lexical scope: The body of a function is evaluated in the old
dynamic environment that existed at the time the function was defined,
not the current environment when the function is called.

—  Causes OCaml to use earlier binding of x
— Thusreturn 1

(In both, environment is extended to map formal parameter to actual value.)
Why would you want one vs. the other? Let’s come back to that...



Implementing time travel

Q: How can functions be evaluated in old environments?
A: The language implementation keeps them around as necessary

* A function value is really a data structure that has two parts:
— The code (obviously)

— The environment that was current when the function was defined
* Gives meaning to all the free variables of the function body

— Code+env is like a pair
* But you cannot access the pieces, or directly write one down in the language syntax
* Allyoucandoiscallit

— This data structure is called a function closure
* A function application:

— evaluates the code part of the closure

— in the environment part of the closure

— extended to bind the function argument

23



Hard example revisited

(* 1 *) let x =1

(* 2 *) let £ = fun y -> x
(* 3 *) let x = 2

(* 4 *) let z = £ 0

With lexical scope:
« Line 2 creates a closure and binds £ to it:
— Code: fun y -> x
— Environment: {x=1}
« Line 4 calls that closure with 0 as argument
— In function body, y bound to 0 and x bound to 1
« So z ends up being bound to 1

24



Question #3

(*
(*
(*
(*
(*

U w DR

*)
*)
*)
*)
*)

let
let
let
let
let

N K X H X

X +vy

o n<

1
3
4
f

(x + y)

What value does z have with lexical scope?

A. 1
B. 5
C. 7
D. 8
E. 10

25



Question #3

(*
(*
(*
(*
(*

U w DR

*)
*)
*)
*)
*)

let
let
let
let
let

N K X H X

N <
H & W || -

(x + y)

« Line 2 creates a closure and binds £ to it:

— Code: fun y -> x+y

— Environment: {x=1}

« Line 5 calls that closure with 7 as argument

— In function body, x bound to 1 and y bound to 7

« Sozisboundto 8

26



Question #3

(*
(*
(*
(*
(*

U w DR

*)
*)
*)
*)
*)

let
let
let
let
let

N K X H X

X +vy

o n<

1
3
4
f

(x + y)

What value does z have with lexical scope?

A. 1
B. 5
C. 7

E. 10

27



Question #4

(*
(*
(*
(*
(*

U w DR

*)
*)
*)
*)
*)

let
let
let
let
let

N K X H X

X +vy

o n<

1
3
4
f

(x + y)

What value does z have with dynamic scope?

A. 1
B. 5
C. 7
D. 8
E. 10

28



Question #4

(*
(*
(*
(*
(*

U w DR

*)
*)
*)
*)
*)

let
let
let
let
let

N K X H X

N <
H & W || -

(x + y)

« Atline5, environmentis {x=3,y=4}

« Line 5 calls £ with argument 7

— body of £ is evaluated in current environment,

 but with y bound to argument value 7

« argument binding shadows previous binding

— Soxis3 and yis7 andresult of callis 10

« Finally, z isboundto 10

29



Question #4

(*
(*
(*
(*
(*

U w DR

*)
*)
*)
*)
*)

let
let
let
let
let

N K X H X

X +vy

o n<

1
3
4
f

(x + y)

What value does z have with dynamic scope?

A. 1

B. 5
C. 7
D. 8

30



Closure notation

<<code, environment>>

e.g.,
<<fun y -> x+y, {x=1}>>

N.B. Can't write this in OCaml syntax



Function application v2.0

To evaluate el e2 inenvironment env
Evaluate el to a value v1 in environment env
env :: el || vl
Note that v1 must be a function
Evaluate e2 to a value v2 in environment env

env :: e2 || v2
Extend environment to bind formal parameter x to actual
value v2

env’’ = + {x=v2}
Evaluate body e to a value v in environment env’ ’

env’'’ :: e || v

Return v



Function application rule v2.0

env :: el e2 || v
fenv :: el ||
<<fun x -> e, env’'>>
andenv :: e2 || v2

andenv’ + {x=v2} :: e || v



Function values v2.0

Anonymous functions fun x-> e are
env :: (fun x -> e) ||
<<fun x -> e, env>>



Lexical vs. dynamic scope

* Consensus after decades of programming language design is that
lexical scope is the right choice

— programmers free to change names of local variables
— type checker can prevent more run-time errors

* Dynamic scope is convenient in some situations
— Some languages use it as the norm (e.g., Emacs LISP, LaTeX)
— Some languages have special ways to do it (e.g., Perl, Racket)
— But most languages just don’t have it

* Exception handling resembles dynamic scope:
— raise e transfers control to the “most recent” exception handler
— like how dynamic scope uses “most recent” binding of variable



Progress

e ::= v | Ce | (el, ., en) | el + e2
x | el e2
let x = el in e2
match e0 with pi -> ei

v ::=c¢c | fun x -> e | C v | (vl, ., vn)

(and there’s now a special kind of value, a closure, that can't appear in
programs but does get produced during evaluation)



Closures in OCaml

$ grep Kclosure *.ml

bytegen.ml: (Kclosure (1lbl, List.length
fv) :: cont)

bytegen.ml: (Kclosurerec (lbls,
List.length fv)

emitcode.ml: | Keclosure (lbl, n) -> out
opCLOSURE; out int n; out label 1lbl

instruct.ml: Kclosure of label * 1int
instruct.ml: Kclosurerec of label 1list * int
printinstr.ml: | Kelosure (lbl, n) ->
printinstr.ml: | Keclosurerec (lbls, n) ->

emitcode.ml: T Kclosurerec (lbls, n) ->
|
|



Closures in Java

 Nested classes can simulate closures

— Used everywhere for Swing GUI!
http://docs.oracle.com/javase/tutorial/uiswing/events/
generalrules.html#innerClasses

— You've done it yourself already in 2110
* Java 8 adds higher-order functions and closures
* (Can even think of OCaml closures as resembling Java
objects:
— closure has a single method, the code part, that can be
invoked

— closure has many fields, the environment part, that can be
accessed




Closures in C

* In C, afunction pointer is just a code pointer, period.
No environment.

* To simulate closures, a common idiom:
Define function pointers to take an extra, explicit
environment argument

* But without generics, no good choice for type of list elements or
the environment

* Use void* and various type casts...
* From Linux kernel:

ntep://Ixr.free-electrons.com/source/include/linux/
cthread.h#L13




Let rec expressions

To evaluate let rec £f x = el in e2 Iin
environment env

don't evaluate the binding expression el
Extend the environment to bind £ to a recursive closure
env’ = env +

{£=<< fun x -> el, env>>}

Evaluate the body expression e2 to a value v2 in
environment env’

env’/’ :: e2 || v2
Return v2



Function application v3.0

To evaluateel e2 inenvironment env

Evaluate el to a value v1 in environment env
env :: el || vl
Note that v1 must be a closure << fun x -> e, env’'>>
or a closure<<fun x -> e, env’'>>

Evaluate e2 to a value v2 in environment env
env :: e2 || v2
Extend closure environment to bind formal parameter x to actual value v2

env’’ = env’ + {x=v2, }

That’s where the recursion happens: name is bound to “itself” inside call
Evaluate body e to a value v in environment env’ ’

env’'’ :: e || v
Return v



