
Prof. Clarkson
Spring 2015

CS 3110
Lecture 8: Closures

Today’s music: Selections from Doctor Who soundtracks, series 5-7

Review

Dynamic semantics:
•  how expressions evaluate
•  substitution model: substitute value for variable in

let expressions, function calls, etc.
•  environment model: maintain a data structure that

binds variables to values

Today:
•  semantics of function calls in environment model

Question #1

Have your registered your iClicker for this semester?
A.  Oops...
B.  Not sure
C.  Yes

h"ps://atcsupport.cit.cornell.edu/pollsrvc/	
 	

iClicker data

•  What gets recorded: "serial number XYZ voted
with button W"
–  so the raw data is all there...

•  What we need to give you credit for those votes:
map from NetID to serial numbers

•  Registration is what gives us that map!
•  Suggestion: write down all the serial numbers

you use so that even if you lose remote, we can
give you credit

Review: the core of OCaml

Essential sublanguage of OCaml:

e ::= v | C e | (e1, ..., en) | e1 + e2
 | x | e1 e2
 | let x = e1 in e2
 | match e0 with pi -> ei

v ::= c | fun x -> e | C v | (v1, ..., vn)

In recitation, pared this down even further to tuples/datatypes
with only two components/constructors

Match expressions
To evaluate
 match e0 with
 p1 -> e1
 | ...
 | pn -> en
in environment env
Evaluate expression e0 to value v0 in env
Find the first pattern pi that matches v0
 That match produces new bindings b
 i.e., v0 = pi{v1/x1}{v2/x2}...{vn/xn}
 and b = {x1=v1, x2=v2, ..., xn=vn}!

Evaluate expression ei to value vi in environment env+b
Return vi

Match expression rule
env :: match e0 with pi -> ei || vi
 if env :: e0 || v0
 and pi is the first pattern to match v0
 and that match produces bindings b
 and env+b :: ei || vi

Example:
{} :: match 42 with x -> x || 42

 because {} :: 42 || 42!
 and x is the first pattern that matches 42!
 and that match produces binding {x=42}
 and {x=42} :: x || 42!

Progress

e ::= v | C e | (e1, ..., en) | e1 + e2
 | x | e1 e2
 | let x = e1 in e2
 | match e0 with pi -> ei

v ::= c | fun x -> e | C v | (v1, ..., vn)

Review: function values

Anonymous functions fun x-> e are values
env :: (fun x -> e) || (fun x -> e)

Review: let expressions

To evaluate let x = e1 in e2 in environment env
Evaluate the binding expression e1 to a value v1 in
environment env

 env :: e1 || v1
Extend the environment to bind x to v1
 env’ = env + {x=v1}

(newer bindings temporarily shadow older bindings)
Evaluate the body expression e2 to a value v2 in
environment env’
 env’ :: e2 || v2

Return v2

Review: let vs. application

These two expressions mean the same thing:
•  let x = e1 in e2!
•  (fun x -> e2) e1!

Function application v1.0
To evaluate e1 e2 in environment env
Evaluate e1 to a value v1 in environment env

 env :: e1 || v1
Note that v1 must be a function value fun x -> e
because function application type checks

Evaluate e2 to a value v2 in environment env
 env :: e2 || v2

Extend environment to bind formal parameter x to actual value v2
 env’ = env + {x=v2}

Evaluate body e to a value v in environment env’
 env’ :: e || v

Return v

Function application rule v1.0

env :: e1 e2 || v
 if env :: e1 || (fun x -> e)
 and env :: e2 || v2
 and env+{x=v2} :: e || v

Example:
{} :: (fun x -> x) 1 || 1

 b/c {} :: (fun x -> x) || (fun x -> x)
 and {} :: 1 || 1
 and {}+{x=1} :: x || 1

Hard example

let x = 1 in
let f = fun y -> x in
let x = 2 in
 f 0

What does our dynamic semantics say it evaluates to?
What does OCaml say?

What do YOU say?

Question #2

What do you think this expression should evaluate to?
let x = 1 in
let f = fun y -> x in
let x = 2 in
 f 0

A.  1

B.  2

Hard example: OCaml

What does OCaml say this evaluates to?
let x = 1 in
let f = fun y -> x in
let x = 2 in
 f 0
- : int = 1

Hard example: our semantics
What does our semantics say?
let x = 1 in
{x=1} let f = fun y -> x in
{x=1,f=(fun y->x)} let x = 2 in
 {x=2,f=(fun y->x)} f 0

{x=2,f=(fun y->x)} :: f 0 || ???
1.  Evaluate f to a value, i.e., fun y->x
2.  Evaluate 0 to a value, i.e., 0
3.  Extend environment to map parameter:

{x=2, f=(fun y->x), y=0}
4.  Evaluate body x in that environment
5.  Return 2

2 <> 1

Why different answers?

Two different rules for variable scope:
•  Rule of dynamic scope (our semantics so far)
•  Rule of lexical scope (OCaml)

Dynamic scope

Rule of dynamic scope: The body of a function is
evaluated in the current dynamic environment at
the time the function is called, not the old
dynamic environment that existed at the time the
function was defined.
–  Causes our semantics to use latest binding of x
–  Thus return 2

Lexical scope

Rule of lexical scope: The body of a function is
evaluated in the old dynamic environment that
existed at the time the function was defined, not
the current environment when the function is
called.
–  Causes OCaml to use earlier binding of x
–  Thus return 1

Lexical scope

Rule of lexical scope: The body of a function is
evaluated in the old dynamic environment that
existed at the time the function was defined, not
the current environment when the function is
called.
–  Causes OCaml to use earlier binding of x
–  Thus return 1

Scope
Rule of dynamic scope: The body of a function is evaluated in the current
dynamic environment at the time the function is called, not the old
dynamic environment that existed at the time the function was defined.
–  Causes our semantics to use latest binding of x
–  Thus return 2

Rule of lexical scope: The body of a function is evaluated in the old
dynamic environment that existed at the time the function was defined,
not the current environment when the function is called.
–  Causes OCaml to use earlier binding of x
–  Thus return 1

(In both, environment is extended to map formal parameter to actual value.)
Why would you want one vs. the other? Let’s come back to that...

Implementing time travel
Q: How can functions be evaluated in old environments?
A: The language implementation keeps them around as necessary

•  A function value is really a data structure that has two parts:
–  The code (obviously)
–  The environment that was current when the function was defined

•  Gives meaning to all the free variables of the function body
–  Code+env is like a pair

•  But you cannot access the pieces, or directly write one down in the language syntax
•  All you can do is call it

–  This data structure is called a function closure
•  A function application:

–  evaluates the code part of the closure
–  in the environment part of the closure
–  extended to bind the function argument

23

Hard example revisited

24

(* 1 *) let x = 1
(* 2 *) let f = fun y -> x
(* 3 *) let x = 2
(* 4 *) let z = f 0

 With lexical scope:

•  Line 2 creates a closure and binds f to it:
–  Code: fun y -> x
–  Environment: {x=1}

•  Line 4 calls that closure with 0 as argument

–  In function body, y bound to 0 and x bound to 1
•  So z ends up being bound to 1

Question #3

25

(* 1 *) let x = 1
(* 2 *) let f y = x + y
(* 3 *) let x = 3
(* 4 *) let y = 4
(* 5 *) let z = f (x + y)

What value does z have with lexical scope?
A.  1

B.  5
C.  7

D.  8

E.  10

Question #3

26

(* 1 *) let x = 1
(* 2 *) let f y = x + y
(* 3 *) let x = 3
(* 4 *) let y = 4
(* 5 *) let z = f (x + y)

•  Line 2 creates a closure and binds f to it:
–  Code: fun y -> x+y
–  Environment: {x=1}

•  Line 5 calls that closure with 7 as argument

–  In function body, x bound to 1 and y bound to 7
•  So z is bound to 8

Question #3

27

(* 1 *) let x = 1
(* 2 *) let f y = x + y
(* 3 *) let x = 3
(* 4 *) let y = 4
(* 5 *) let z = f (x + y)

What value does z have with lexical scope?
A.  1

B.  5
C.  7

D.  8
E.  10

Question #4

28

(* 1 *) let x = 1
(* 2 *) let f y = x + y
(* 3 *) let x = 3
(* 4 *) let y = 4
(* 5 *) let z = f (x + y)

What value does z have with dynamic scope?
A.  1

B.  5
C.  7

D.  8

E.  10

Question #4

29

•  At line 5, environment is {x=3,y=4}
•  Line 5 calls f with argument 7

–  body of f is evaluated in current environment,

•  but with y bound to argument value 7
•  argument binding shadows previous binding

–  So x is 3 and y is 7 and result of call is 10
•  Finally, z is bound to 10

(* 1 *) let x = 1
(* 2 *) let f y = x + y
(* 3 *) let x = 3
(* 4 *) let y = 4
(* 5 *) let z = f (x + y)

Question #4

30

(* 1 *) let x = 1
(* 2 *) let f y = x + y
(* 3 *) let x = 3
(* 4 *) let y = 4
(* 5 *) let z = f (x + y)

What value does z have with dynamic scope?
A.  1

B.  5
C.  7

D.  8

E.  10

Closure notation

<<code, environment>>
e.g.,
<<fun y -> x+y, {x=1}>>

N.B. Can't write this in OCaml syntax

Function application v2.0

To evaluate e1 e2 in environment env
Evaluate e1 to a value v1 in environment env

 env :: e1 || v1
Note that v1 must be a function closure <<fun x -> e, env’>>

Evaluate e2 to a value v2 in environment env
 env :: e2 || v2

Extend closure environment to bind formal parameter x to actual
value v2

 env’’ = env’ + {x=v2}
Evaluate body e to a value v in environment env’’

 env’’ :: e || v
Return v

Function application rule v2.0

env :: e1 e2 || v
 If env :: e1 ||
 <<fun x -> e, env’>>
 and env :: e2 || v2
 and env’ + {x=v2} :: e || v

Function values v2.0

Anonymous functions fun x-> e are closures
env :: (fun x -> e) ||
 <<fun x -> e, env>>

Lexical vs. dynamic scope
•  Consensus after decades of programming language design is that

lexical scope is the right choice
–  programmers free to change names of local variables
–  type checker can prevent more run-time errors

•  Dynamic scope is convenient in some situations
–  Some languages use it as the norm (e.g., Emacs LISP, LaTeX)
–  Some languages have special ways to do it (e.g., Perl, Racket)
–  But most languages just don’t have it

•  Exception handling resembles dynamic scope:
–  raise e transfers control to the “most recent” exception handler
–  like how dynamic scope uses “most recent” binding of variable

35

Progress

e ::= v | C e | (e1, ..., en) | e1 + e2
 | x | e1 e2
 | let x = e1 in e2
 | match e0 with pi -> ei

v ::= c | fun x -> e | C v | (v1, ..., vn)

(and there's now a special kind of value, a closure, that can't appear in
programs but does get produced during evaluation)

Closures in OCaml
clarkson@chardonnay ~/share/ocaml-4.02.0/
bytecomp
$ grep Kclosure *.ml
bytegen.ml: (Kclosure(lbl, List.length
fv) :: cont)
bytegen.ml: (Kclosurerec(lbls,
List.length fv) ::
emitcode.ml: | Kclosure(lbl, n) -> out
opCLOSURE; out_int n; out_label lbl
emitcode.ml: | Kclosurerec(lbls, n) ->
instruct.ml: | Kclosure of label * int
instruct.ml: | Kclosurerec of label list * int
printinstr.ml: | Kclosure(lbl, n) ->
printinstr.ml: | Kclosurerec(lbls, n) ->

Closures in Java

•  Nested classes can simulate closures
–  Used everywhere for Swing GUI!

http://docs.oracle.com/javase/tutorial/uiswing/events/
generalrules.html#innerClasses

–  You’ve done it yourself already in 2110
•  Java 8 adds higher-order functions and closures
•  Can even think of OCaml closures as resembling Java

objects:
–  closure has a single method, the code part, that can be

invoked
–  closure has many fields, the environment part, that can be

accessed

38

Closures in C

•  In C, a function pointer is just a code pointer, period.
No environment.

•  To simulate closures, a common idiom:
Define function pointers to take an extra, explicit
environment argument

•  But without generics, no good choice for type of list elements or
the environment

•  Use void* and various type casts…

•  From Linux kernel:
http://lxr.free-electrons.com/source/include/linux/
kthread.h#L13

39

Let rec expressions

To evaluate let rec f x = e1 in e2 in
environment env
don’t evaluate the binding expression e1
Extend the environment to bind f to a recursive closure
env’ = env +
 {f=<<f, fun x -> e1, env>>}

Evaluate the body expression e2 to a value v2 in
environment env’
 env’ :: e2 || v2

Return v2

Function application v3.0
To evaluate e1 e2 in environment env
Evaluate e1 to a value v1 in environment env

 env :: e1 || v1
Note that v1 must be a recursive closure cl=<<f, fun x -> e, env’>>
or a closure <<fun x -> e, env’>>

Evaluate e2 to a value v2 in environment env
 env :: e2 || v2

Extend closure environment to bind formal parameter x to actual value v2 and
(if present) function name f to the closure

 env’’ = env’ + {x=v2,f=cl}
 That’s where the recursion happens: name is bound to “itself” inside call

Evaluate body e to a value v in environment env’’
 env’’ :: e || v

Return v

