
Prof. Clarkson
Spring 2015

CS 3110
Lecture 23: Object Encoding

ob-ject: to feel distaste for something – Webster's Dictionary

Today’s music: "Beautiful Object" by Glass Candy

Review

Current topic: functional vs. object-oriented
programming
•  Last time: the expression problem; OOP vs. FP

isn't only a matter of taste

Today:
•  What is an object?
•  Implement/encode objects in OCaml

Question #1: What is an object?

A.  Objects are entities that combine state,
behavior, and identity.

B.  Objects have state and behavior.
C.  Objects encapsulate data and operations.
D.  An object is a data structure encapsulating

some internal state and offering access to this
state to clients with a collection of methods.

E.  None of the above

Question #1: What is an object?

A.  Objects are entities that combine state, behavior,
and identity. [Wikipedia]

B.  Objects have state and behavior. [Oracle]
C.  Objects encapsulate data and operations.

[Carrano & Prichard]
D.  An object is a data structure encapsulating some

internal state and offering access to this state to
clients with a collection of methods. [Pierce]

E.  None of the above

What are key features of OOP?

1.  Encapsulation
2.  Subtyping
3.  Inheritance
4.  Dynamic dispatch
•  (Classes?)
•  ...

1. Encapsulation

•  Object has internal state
•  Object's methods can inspect and modify that

state
•  Clients cannot directly access state except

through methods

...how is this (un)like OCaml modules?

2. Subtyping

•  Type of an object involves the names and types
of its methods

•  Object of type t can be used in place of an object
of type t' if t is a subtype of t'

•  Subtyping depends on names and types of
methods

...how is this (un)like OCaml types?

3. Inheritance

•  Objects inherit some of their behavior
•  Associated with classes
–  templates from which objects can be constructed

•  Subclassing derives new classes from old classes
–  add new methods
–  override implementations of old methods
–  inherit other old methods

...how is this (un)like OCaml modules?

4. Dynamic dispatch

•  Some might argue this is the defining characteristic of
objects
–  But it's the one you won't have heard about in 2110!

•  Method that is invoked ("dispatched") on an object is
determined at run-time ("dynamically") rather than at
compile-time ("statically")

•  Special keyword: this or self
–  Always in scope inside a method
–  Always bound to the receiving object of a method invocation

...how is this (un)like OCaml functions in a module?

Object encoding

•  Rest of this lecture: encode objects in OCaml
•  Purpose: understand OOP features better by

approximating them in OCaml
•  Non-purpose: exactly model Java objects in all

their rich details

•  Non-purpose: use the OCaml object system to
mimic Java objects

Running example: counters

class Counter {
 protected int x = 0;
 public int get() { return x; }
 public void inc() { x++; }
}

1. ENCAPSULATION

Objects as records

•  A Java object is a collection of named values
•  An OCaml record is also a collection of named

values
•  So we could try something like:
 { x = 0;
 get = ...;
 set = ...; }
•  But that would fail to provide encapsulation of x

Encapsulation of private state

•  Idea: use let-binding to hide the state
 let x = ref 0 in {
 get = (fun () -> !x);
 inc = (fun () -> x := !x+1);
 }
•  Record exposes only the methods
•  The private field is hidden by the let-binding
–  Really: a closure is created for each method that has the

state in its environment

Object type

•  Type of the object we just created:
 type counter = {
 get : unit -> int;
 inc : unit -> unit;
 }
•  Note: x is not exposed in type

Method invocation

•  Given an object:
let c : counter =
 let x = ref 0 in {
 get = (fun () -> !x);
 inc = (fun () -> x := !x+1);
 }

•  We can invoke methods with field accesses:
c.inc(); c.inc(); c.get()

•  Note: the parens are the unit value

Functions with objects

•  OCaml functions can manipulate objects:
 let inc3 (c:counter) =

 c.inc(); c.inc(); c.inc()

•  OCaml functions can construct new objects:
let new_counter = fun () ->
 let x = ref 0 in {
 get = (fun () -> !x);
 inc = (fun () -> x := !x+1);
 }
let c = new_counter()
let one = c.inc(); c.get()

2. SUBTYPING

Subtype of Counter

class ResetCounter extends Counter {
 public void reset() { x = 0; }
}

Direct encoding of ResetCounter

type reset_counter = {
 get : unit -> int;
 inc : unit -> unit;
 reset : unit -> unit;
}

let new_reset_counter () =
 let x = ref 0 in {
 get = (fun () -> !x);
 inc = (fun () -> x:=!x+1);
 reset = (fun () -> x:=0);
 }

we're duplicating code from new_counter :(
let's come back to that

Call function with a subtype

let rc = new_reset_counter()
inc3 rc (* won't work! wrong arg type *)

let counter__of__reset_counter
(rc : reset_counter) : counter = {
 get = rc.get;
 inc = rc.inc;
}
inc3 (counter__of__reset_counter rc)

Explicit coercion

•  Use an explicit function call to coerce value of
subtype into value of supertype

•  Wouldn't be needed if OCaml supported row
polymorphism on records
– Basic idea: {x:int; y:int} can be used

wherever {x:int} is expected

– Problem: efficient implementation

3. INHERITANCE

Duplicated code

•  Problem: duplicated code between objects
•  Solution: classes
•  What is a class?

Data structure holding methods. Can be:
•  instantiated to yield a new object
•  extended to yield a new class

•  We want to reuse method code when possible
 ...even if the representation of internal state changes
 ...let's parameterize on representation type

Refactor counter
type counter_rep = {
 x : int ref;
}

let counter_class = fun (r:counter_rep) -> {
 get = (fun () -> !(r.x));
 inc = (fun () -> (r.x := !(r.x) + 1));
}

let new_counter () =
 let r = {x = ref 0} in
 counter_class r

What is a class?

•  A function
–  from internal rep of object state
–  to record of methods, all of which use that shared

state

•  i.e., a way of generating related objects
•  Not a type!
– Many languages pun types and classes

Implementing inheritance: Idea

•  Subclass creates an object of the superclass with
the same internal state as its own
– Bind resulting parent object to super

•  Subclass creates a new object with same internal
state

•  Subclass copies (inherits) any implementations it
wants from superclass

ResetCounter with inheritance

let reset_counter_class =
fun (r:counter_rep) ->
 let super = counter_class r in {
 get = super.get;
 inc = super.inc;
 reset = (fun () -> r.x := 0)
 }

let new_reset_counter () =
 let r = {x=ref 0} in
 reset_counter_class r

Implementing inheritance: Code

reset_counter_class
– first creates an object of the superclass with the same

internal state as its own

–  the resulting parent object is bound to super
–  then creates a new object with same internal state
– copies (inherits) the implementations of get and
inc from superclass

– provides its own implementation of new methods

Another subtype of Counter

class BackupCounter extends ResetCounter {
 protected int b = 0;
 public void backup() { b = x; }
 public void reset() { x = b; }
}

...adds method and a new field

...overrides one method

BackupCounter with inheritance

type backup_counter = {
 get : unit -> int;
 inc : unit -> unit;
 reset : unit -> unit;
 backup : unit -> unit
}

type backup_counter_rep = {
 x : int ref;
 b : int ref;
}

Class for BackupCounter
let backup_counter_class
(r : backup_counter_rep) =
 let super = reset_counter_class
 (counter_rep__of__backup_counter_rep r) in {
 get = super.get;
 inc = super.inc;
 reset = (fun () -> r.x := !(r.b));
 backup = (fun () -> r.b := !(r.x));
 }

let new_backup_counter () =
 let r = {x = ref 0; b = ref 0} in
 backup_counter_class r

Upcast

From subclass to superclass:

let counter_rep__of__backup_counter_rep
(r : backup_counter_rep) = {
 x = r.x;
}

Explicitly coerce representation, thereby forgetting
about some fields

4. DYNAMIC DISPATCH
(to be continued)

