
Prof. Clarkson
Spring 2015

CS 3110
Lecture 22:

The Expression Problem

Today’s music: "Express Yourself"
by Charles Wright & The Watts 103rd Street Rhythm Band

Review

Course so far:
•  Functional programming
•  Modular programming
•  Imperative programming
•  Reasoning about programs
•  Concurrent programming

Final couple weeks: Advanced topics
•  Next couple lectures:

functional programming vs. object-oriented programming

OOP! FP!

Expression Problem

•  How do you express yourself in a functional language vs.
an OO language?

•  More specifically:
–  Suppose you're building a library of components

•  GUI library with widgets
•  Collections library with data structures
•  etc.

–  Problem: How do you express the data and the operations?
–  Problem: How do you evolve the library to add new data and

new operations?

Expression Problem

Very specific version of problem [Wadler 1998]:
– An arithmetic expression language
– Add new kinds of expressions

– Add new kinds of functions on expressions

Expression language

e ::= n | - e | e1 + e2 | ...

Operations:
•  evaluate to integer value
•  convert to string (e.g., for printing)
•  determine whether zero occurs in expression
•  ...

How will you design code to implement language?

Question #1

Which language would you choose to implement
an interpreter for this simple expression language?
A.  OCaml
B.  Java
C.  Python

D.  MIPS
E.  None of the above

Expression language

e ::= n | - e | e1 + e2 | ...

Operations:
•  evaluate to integer value
•  convert to string (e.g., for printing)
•  determine whether zero occurs in expression
•  ...

How will you design code to implement language?
The answer depends on your perspective on The Matrix.

The Matrix

The Matrix
•  Rows are variants of expressions: ints, additions,

negations, ...
•  Columns are operations to perform: eval,

toString, hasZero, …

eval toString hasZero …

Int

Add

Negate

…

Implementation will involve deciding "what should
happen” for each entry in the matrix regardless of the PL

Expression Language in OCaml

type exp = !
 | Int of int !
 | Negate of exp !
 | Add of exp * exp !
!
let rec eval = function!
 | Int i -> i!
 | Negate e -> -(eval e)!
 | Add(e1,e2) -> (eval e1) + (eval e2)!

Expression in FP

•  In FP, decompose programs into functions that perform
some operation

•  Define a datatype, with one constructor for each variant
•  Fill out the matrix with one function per column

–  Function will pattern match on the variants
–  Can use a wildcard pattern if there is a default for multiple

variants (but maybe you shouldn't...)

eval toString hasZero …

Int

Add

Negate

…

Expression Language in Java
interface Exp {!
 int eval(); !
 String toString(); !
 boolean hasZero();!
}!

class Int implements Exp {!
 private int i;!
 public Int(int i) {!

! !this.i = i;!
 }!
 public int eval() {!

! !return i;!
 }!
 public String toString() {!

! !return Integer.toString(i);!
 }!
 public boolean hasZero() {!

! !return i==0;!
 }!
}!

Expression in OOP

•  In OOP, decompose programs into classes that give behavior to
some variant

•  Define an abstract class, with an abstract method for each operation
•  Fill out the matrix with one subclass per row

–  Subclass will have method for each operation
–  Can use a method in the superclass if there is a default for multiple

variants (but maybe you shouldn't...)

eval toString hasZero …

Int

Add

Negate

…

FP vs. OOP

FP vs. OOP:
– Both need you to express a type to get started, then...
– FP: express design by column

– OOP: express design by row

eval toString hasZero …

Int

Add

Negate

…

FP vs. OOP

•  These two forms of decomposition are so
exactly opposite that they are two ways of
looking at the same matrix

•  Which form is better is somewhat subjective,
but also depends on how you expect to
change/extend software

Extension

Suppose we need to add new:
– operations (removeNegConstants)
– variants (Mult)

eval toString hasZero removeNegConstants

Int

Add

Negate

Mult

Extension in OCaml
type exp = !
 | Int of int !
 | Negate of exp !
 | Add of exp * exp!
 | Mult of exp * exp!
!
let rec eval = function!
 | Int i -> i!
 | Negate e -> -(eval e)!
 | Add(e1,e2) -> (eval e1) + (eval e2)!
 | Mult(e1,e2) -> (eval e1) * (eval e2)!
!
let rec remove_neg_constants = function!
 | Int i when i<0 -> Negate (Int (-i))!
 | Int _ as e -> e!
 | Negate e1 -> Negate(remove_neg_constants e1)!
 | Add(e1,e2) -> Add(remove_neg_constants e1, remove_neg_constants e2)!
 | Mult(e1,e2) -> Mult(remove_neg_constants e1, remove_neg_constants e2)!

Extension in FP

– Easy to add a new operation
•  Just write a new function

•  Don’t have to modify existing functions

– Hard to add a new variant
•  Have to edit all existing functions

•  But type-checker gives a todo list if you avoid wildcard
patterns

eval toString hasZero noNegConstants

Int

Add

Negate

Mult

Extension in Java
interface Exp {!
 int eval(); !
 String toString(); !
 boolean hasZero();!
 Exp removeNegConstants(); !
}!
!
class Int implements Exp {!

!... !
!public Exp removeNegConstants() {!
! !if (i < 0) {!
! ! return new Negate(new Int(-i));!
! !} else {!
! ! return this;!
! !}!

 !}!
}!

class Mult implements Exp {!
 private Exp e1;!
 private Exp e2;!
 public Mult(Exp e1, Exp e2) {!

! !this.e1 = e1;!
! !this.e2 = e2;!

 }!
 public int eval() {!

! !return e1.eval() * e2.eval();!
 }!
 public String toString() {!

! !return "(" + e1.toString() !
! ! ! !+ " * " !
! ! ! !+ e2.toString() + ")";!

 }!
 public boolean hasZero() { !!

! !return e1.hasZero() !
! ! ! !|| e2.hasZero();!

 }!
 public Exp removeNegConstants() {!

! !...!
 }!
}!

Extension in OOP

– Easy to add a new variant
•  Just write a new class

•  Don’t have to modify existing classes

– Hard to add a new operation
•  Have to modify all existing classes
•  But Java type-checker gives a todo list if you avoid non-

abstract methods

eval toString hasZero noNegConstants

Int

Add

Negate

Mult

Planning for extension
•  FP makes new operations easy
•  So if you know you want new operations, use FP
•  FP can support new variants somewhat awkwardly if you plan ahead

–  Parameterize datatype and operations on "future extensions" (not
discussed here)

•  OOP makes new variants easy
•  So if you know you want new variants, use OOP
•  OOP can support new operations somewhat awkwardly if you plan

ahead
–  Visitor Pattern (not discussed here)

…once again, FP and OOP are exact opposites

Thoughts on Extensibility

•  Reality: the future is hard to predict
•  Might not know what kind of extensibility you need
•  Might even need both kinds!

•  Languages like Scala try; it’s a hard problem

•  Extensibility is a double-edged sword
–  Pro: code more reusable
–  Con: code more difficult to reason about locally or to change

later (could break extensions)
–  So some language features specifically designed to make code

less extensible
•  e.g., Java’s final prevents subclassing/overriding

Summary

•  The Matrix is a fundamental truth about reality
(of software)

•  Software extensibility is heavily influenced by
programming paradigm

OOP vs. FP isn’t only a matter of taste

