CS 3110

Lecture 22:
The Expression Problem

Prof. Clarkson
Spring 2015

Today’s music: "Express Yourself”
by Charles Wright & The Watts 103" Street Rhythm Band

Review

Course so far:

Functional programming
Modular programming
Imperative programming
Reasoning about programs
Concurrent programming

Final couple weeks: Advanced topics

Next couple lectures:

Expression Problem

* How do you express yourself in a functional language vs.
an OO language?

* More specifically:

— Suppose you're building a library of components
* GUI library with widgets
* Collections library with data structures
* etc.

— Problem: How do you express the data and the operations?

— Problem: How do you evolve the library to add new data and
new operations?

Expression Problem

Very specific version of problem [Wadler 1998]:
— An arithmetic expression language
— Add new kinds of expressions

— Add new kinds of functions on expressions

Expression language
e ::=n| - e | el + e2 |

Operations:

* evaluate to integer value

* convert to string (e.g., for printing)

* determine whether zero occurs in expression

How will you design code to implement language?

Question #1

Which language would you choose to implement
an interpreter for this simple expression language?

A. OCaml
B. Java
C. Python
D. MIPS

E. None of the above

Expression language
e ::=n| - e | el + e2 |

Operations:

* evaluate to integer value

* convert to string (e.g., for printing)

* determine whether zero occurs in expression

How will you design code to implement language?
The answer depends on your perspective on The Matrix.

..al-., ! N ° "R wme T
i Rl T
Rw.asé Erz..a...a_..r...!..

hne ‘ ':
FUNY RV TP

g e

e e LT

PR i aMaubaEn. BslhyuNnes ahy

Ry .g..u.&..td R

Sty Di8E.

lttt lea‘f
S LT

3.?..3 "5 et hifilytitite
“inme e Ul CUL R IR T

SO TS BT T TR
Fhladttt Y e e

P8 F B IR N PEEEYY v 1

1¢ T - wNatLun - tn.tas ctc.a.l...!.
L 8. -
oAl prenre nnv J g = gr’ . -_ e
3-0 .an. ENME WY W R

M O RNFSNARNUUS S E e v nab
?t CEMUSA VW TN e v

L s t..i.ill&

une 1wz —enwllf® °¢ teme i@

The Matrix

* Rows are variants of expressions: ints, additions,
negations, ...

* Columns are operations to perform: eval,
toString, hasZero, ...

eval toString | hasZero

Int
Add

Negate

Implementation will involve deciding "what should
happen” for each entry in the matrix regardless of the PL

Expression Language in OCaml

type exp =

let

Int of int
Negate of exp
Add of exp * exp

rec eval = function
Int 1i -> 1
Negate e -> —(eval e)

Add(el,e2) -> (eval el)

+

(eval e2)

Expression in FP

eval toString | hasZero

Int
Add
Negate

* In FP, decompose programs into functions that perform
some operation

* Define a datatype, with one constructor for each variant
* Fill out the matrix with one function per column

— Function will pattern match on the variants

— Can use a wildcard pattern if there is a default for multiple
variants (but maybe you shouldn't...)

Expression Language in Java

interface Exp { class Int implements Exp {
int eval(); private int 1ij;
String toString(); public Int(int i) {
boolean hasZero(); this.i = i;
} }
public int eval() {
return i;
}

public String toString() {
return Integer.toString(i);

}

public boolean hasZero() {
return i==0;

}

Expression in OOP

eval toString | hasZero

Int
Add
Negate

* In OOP, decompose programs into classes that give behavior to
some variant

* Define an abstract class, with an abstract method for each operation
* Fill out the matrix with one subclass per row

— Subclass will have method for each operation

— Can use a method in the superclass if there is a default for multiple
variants (but maybe you shouldn't...)

FP vs. OOP

eval toString | hasZero

Int
Add
Negate

FP vs. OOP:
— Both need you to express a type to get started, then...

— FP: express design by column

— OOP: express design by row

FP vs. OOP

* These two forms of decomposition are so

exactly opposite that they are two ways of
looking at the same matrix

* Which form is better is somewhat subjective,

but also depends on how you expect to
change/extend software

Extension

eval

toString

hasZero

removeNegConstants

Int

Add

Negate

Mult

Suppose we need to add new:
— operations (removeNegConstants)

— variants (Mult)

Extension in OCaml

type exp =
| Int of int
| Negate of exp
| Add of exp * exp

let rec eval = function
| Int 1 -> i
| Negate e -> -(eval e)
| Add(el,e2) -> (eval el) + (eval e2)

Extension in FP

eval toString | hasZero noNegConstants

Int
Add
Negate

— Easy to add a new operation

e Just write a new function

* Don’t have to modify existing functions

— Hard to add a new variant
* Have to edit all existing functions

* But type-checker gives a todo list if you avoid wildcard
patterns

Extension in Java

interface Exp {
int eval();
String toString();
boolean hasZero();

}

class Int implements Exp {

Extension in OOP

eval toString | hasZero

Int
Add
Negate
Mult

— Easy to add a new variant
* Just write a new class

* Don’t have to modify existing classes

— Hard to add a new operation

* Have to modify all existing classes

* But Java type-checker gives a todo list if you avoid non-
abstract methods

Planning for extension

* Soif you know you want new operations, use FP

* FP can support new variants somewhat awkwardly if you plan ahead

— Parameterize datatype and operations on "future extensions” (not
discussed here)

* So if you know you want new variants, use OOP

* OOP can support new operations somewhat awkwardly if you plan
ahead

— Visitor Pattern (not discussed here)

...once again, FP and OOP are exact opposites

Thoughts on Extensibility

« Reality: the future is hard to predict
* Might not know what kind of extensibility you need
* Might even need both kinds!

* Languages like Scala try; it’s a hard problem

* Extensibility is a double-edged sword
— Pro: code more reusable

— Con: code more difficult to reason about locally or to change
later (could break extensions)

— So some language features specifically designed to make code
less extensible
* e.g,Javas £inal prevents subclassing/overriding

Summary

* The Matrix is a fundamental truth about reality
(of software)

* Software extensibility is heavily influenced by
programming paradigm

OOP vs. FP isn't only a matter of taste

