
Profs. Clarkson & George
Spring 2015

CS 3110
Lecture 1: Course Overview

Today’s music: Prelude from Final Fantasy VII
by Nobuo Uematsu (remastered by Sean Schafianski)

Welcome!

We have 15 weeks to finish your
 university education as a programmer

•  Programming isn’t hard
•  Programming well is very hard
– High variance among professionals’ productivity:

10x or more
– With hard work, patience, and an open mind, this

course makes you a better programmer

Evolution

•  CS 1110: Write code for your professor

•  CS 2110: Write code for yourself

•  CS 3110: Write code for others
–  Emphasis on design, performance, correctness
– Also, with others: techniques and tools for collaboration
– MAIN GOALS for this course:

write code for and with others

How we’ll approach goals

1.  Functional programming (OCaml)
– Challenge you to think outside the Python/Java

imperative family of languages

– Realize that programming transcends programming
in a language
•  Language features: syntax, semantics, idioms, tools

How we’ll approach goals

2.  Data structures and modern programming
paradigms
– Challenge you to think about abstraction

– Rigorously analyze performance and correctness
– Learn to write concurrent programs
– Learn to write scalable programs

How we’ll approach goals

3.  Software engineering
– Experience with modular design, specification,

integrated testing, source control, code reviews

– Expose you to tools used in the real world (git, Linux)

Challenges in our way

You might think programming = Java
– For the next five weeks, please let go of Java
– Learn OCaml as a totally new way of programming

– Thinking “Oh, that’s like this thing in Java” will
confuse you, slow you down, make you learn less

Challenges in our way

You might think programming = hack until it
works
– As you begin this semester, please develop the

mindset of a professional: disciplined work habits
– Common challenge: type first, think later

•  “A year in the lab saves an hour at the library”
•  Fact: there is an infinite number of incorrect programs

•  Corollary: tweaking your code is unlikely to help
•  …we hope you’ll think first and type less

Keep the end in sight

We want to help you learn to write code that is
– Reliable
– Efficient

– Readable
– Testable
– Provable

– Maintainable
– BEAUTIFUL

OCaml

A pretty good language for writing beautiful
programs

O = Objective, Caml=not important
ML is a family of languages; originally the “meta-language” for a tool

OCaml is awesome because of…
•  Immutable programming

–  Variable’s values cannot destructively be changed; makes reasoning about program
easier!

•  Algebraic datatypes and pattern matching
–  Makes definition and manipulation of complex data structures easy to express

•  First-class functions
–  Functions can be passed around like ordinary values

•  Static type-checking
–  Reduce number of run-time errors

•  Automatic type inference
–  No burden to write down types of every single variable

•  Parametric polymorphism
–  Enables construction of abstractions that work across many data types

•  Garbage collection
–  Automated memory management eliminates many run-time errors

Why immutability?

Imperative (mutable) programming:
•  commands specify how to compute by destructively

changing state
– x = x+1;	
– a[i] = 42;	
– p.next = p.next.next;	

•  and functions/methods have side effects
– int wheels(Vehicle v) {  
 v.size++; return v.numWheels;  
}	

Why immutability?

The fantasy of mutability:
– There is a single state
– The computer does one thing at a time

The reality of mutability:
– There is no single state

•  Programs have many threads, spread across many cores, spread across
many processors, spread across many computers… each with its own
view of memory

– There is no single program
•  Most applications do many things at one time

…mutable programming is not well-suited to modern
computing!

Why immutability?

Functional (immutable) programming:
expressions specify what to compute
– Variables never change value
– Functions never have side effects

The reality of immutability:
– No need to think about state
– Powerful ways to build concurrent programs

Functional vs. imperative

Functional languages:
– Higher level of abstraction
–  Easier to develop robust software

Imperative languages:
–  Lower level of abstraction
– Harder to develop robust software

You don’t have to believe me now.
You will by the end of the course. J

Functional languages predict the future

Dismissed as “beautiful, worthless, slow things
professors make you learn in school”:
– Garbage collection

Java [1995], LISP [1958]
– Generics

Java 5 [2004], ML [1990]
– Higher-order functions

C#3.0 [2007], Java 8 [2014], LISP [1958]
– Type inference

C++11 [2011], Java 7 [2011] and 8, ML

Functional languages matter in the real world

•  F#, C# 3.0, LINQ (Microsoft)
•  Scala (Twitter, LinkedIn, FourSquare)
•  Java 8
•  Haskell (dozens of small companies/teams)
•  Erlang (distributed systems, Facebook chat)
•  OCaml (Jane Street)

A GLIMPSE OF OCAML…

Example 1: Sum Squares

// yields Σ1<=i<=n i2

int sum_squares(int n) {
 sum=0;
 for (int x = 1; x <= n; x++) {
 sum = sum + x*x
 }
 return sum;
}

How can you do that without mutability?

Example 1: Sum Squares

// yields Σ1<=i<=n i2

int sum_squares(int n) {
 if (n==0) {
 return 0;
 } else {
 return n*n + sum_squares(n-1)
 }
}

Example 1: Sum Squares
(* yields Σ1<=i<=n i2 *)	
let rec sum_squares (n:int) : int =
 if n=0 then 0
 else n*n + sum_squares (n-1)

Better yet…

(* yields Σ1<=i<=n i2 *)	
let rec sum_squares n =
 if n=0 then 0
 else n*n + sum_squares (n-1)

Example 2: Reverse List
// return a copy of x,
// with the order of its elements reversed
List reverse(List x) {
 List y = null;
 while (x != null) {
 List t = x.next;
 x.next = y;
 y = x;
 x = t;
 }
 return y;

}

Example 2: Reverse List

(* return the reverse of lst *)

let rec reverse lst =

 match lst with

 | [] -> []

 | h::t -> (reverse t) @ [h]

Example 3: Quicksort

•  Describe quicksort in English.
•  Describe quicksort in Java. (No.)
•  Describe quicksort in OCaml:

(* returns lst sorted according to < *)
let rec qsort lst =

 match lst with
 | [] -> []
 | pivot::rest -> (* poor choice of pivot *)
 let (left,right) = partition ((<) pivot) rest
 in (qsort left) @ [pivot] @ (qsort right)

	

THE SYLLABUS

Course staff

Instructors:
•  Michael Clarkson
–  PhD 2010 Cornell University

•  Mike George
–  ABD Cornell University

•  Research areas: security and programming languages
•  We go by “Prof. Clarkson” and "Prof. George" in this course

TAs and consultants: 28 at last count
–  Course administrator (“head TA”): Remy Jette (rcj57)

Course meetings

•  Lectures: TR 10:10-11:00 am
–  Attendance is expected and will be checked
–  If you miss, get notes from another student

•  Recitations: mostly MW
–  Attendance is expected
–  TR sections are effectively MW delayed one day
–  You may attend any, regardless of registration, subject to room

capacity; best to stick to one

•  Consulting: coverage every day except Monday

Course website

http://www.cs.cornell.edu/Courses/cs3110/2015sp/

•  Full syllabus (required reading)
•  Lecture and recitation notes
– Typically go live the night after the lecture
– Supplement, do not replace, attendance

Piazza

•  Online discussion forum
•  Primary vehicle for announcements
– Set up email notifications now

•  Monitored almost continuously by staff
•  Ask for help, don’t post solutions
•  Post anonymously (to classmates)

•  Post privately (only seen by staff)

Email

•  If it's about content (e.g., you have a question about
a homework problem), post a message on Piazza
instead
– Messages restricted only to instructors probably will get

lost

•  If it's about your own personal logistics (e.g., you
need to leave town for a funeral), send email to
cs3110-instructors-L@cornell.edu

•  But better than that...come talk to us in person!

CMS

•  Course Management System
•  Grades, regrades, materials we don’t want to post

publicly
•  Make sure you have access to CS 3110 now
–  If not, notify Course Administrator and provide your

full name and NetID

•  Gets overloaded at due time; submit early

Course materials

•  No textbook
– Online course notes
–  If you want a book, Real World OCaml is

good and written 2/3 by Cornellians
– Other free resources linked on website

•  i>clickers
–  Required; will be used to take attendance
–  Buy one at Cornell Store
– Will not use i>clicker GO app in this course
– We start using them on Tuesday in lecture

Problem Sets

Five problem sets (PS’s)
– Plus an ungraded, uncollected PS0
– Usually soft deadline on Thursdays at 11:59 pm,

followed by hard deadline 48 hours later
•  25% late penalty after soft deadline

– Electronic submission by CMS, never by email
– Length of time usually about 1.5 weeks
– First individual, then pairs, then small teams

Exams

•  Two prelims
– Prelim 1: 03/10/15
– Prelim 2: 04/21/15
– Put them on your calendar now
– Two offerings each night: 5:15-7:15 and 7:30-9:30

•  No other makeups will be offered
•  If you miss without advance permission, you get a zero

•  Final
– University will announce date and time later

Grading

•  Problem sets: 40%
•  Prelims: 15% each
•  Final: 25%
•  Other factors: 5%

Historical median grade: B/B+ range

Academic integrity

•  You are bound by the Cornell Code of Academic Integrity
and the CS Department Code of Academic Integrity
–  Both linked from course website
–  You are responsible for understanding them

•  In 3110, you may not share code with anyone
–  (except partner or teammates)

•  In 3110, you may not copy code from online sources
•  If you have a question about what is or is not allowed,

please ask
•  The course staff uses automated software to detect

cheating. It works.

Upcoming events
•  [today] PS 0 is out now

–  Start by getting OCaml installed and working
–  We provide a virtual machine (VM) that makes this relatively easy

•  [Saturday] OCaml Install Session
–  Upson 315, noon to 8 pm
–  Drop in at any time if you need help with VM or OCaml

•  [Monday] Recitations begin (none today)
•  [Tuesday am] i>clickers start in lecture
•  [Tuesday pm] Consulting hours and office hours start

–  Drop by Profs offices this afternoon if you need something immediately
–  Regular hours will be posted on Piazza next Tuesday

 …why are you still here? Get to work! J

THIS IS 3110

