CS 3110

Lecture 1: Course Overview

Profs. Clarkson & George
Spring 2015

Today’s music: Prelude from Final Fantasy VI
by Nobuo Uematsu (remastered by Sean Schafianski)

Welcome!

* Programmingisn’t hard

* Programming IS hard
— High variance among professionals’ productivity:
10x or more

— With hard work, patience, and an open mind, this
course makes you a better programmer

Evolution

* CS 1110: Write code for your
* CS2110: Write code for

* CS 3110: Write code for
— Emphasis on design, performance, correctness
— Also, with others: techniques and tools for collaboration

— MAIN GOALS for this course:
write code for and with others

How we’ll approach goals

1. Functional programming (OCaml)

— Challenge you to think outside the Python/Java
imperative family of languages

— Realize that transcends

* Language features: syntax, semantics, idioms, tools

How we’ll approach goals

2. Data structures and modern programming
paradigms
— Challenge you to think about abstraction
— Rigorously analyze performance and correctness
— Learn to write concurrent programs

— Learn to write scalable programs

How we’ll approach goals

3. Software engineering

— Experience with modular design, specification,
integrated testing, source control, code reviews

— Expose you to tools used in the real world (git, Linux)

Challenges in our way

You might think programming = Java
— For the next five weeks, please
— Learn OCaml as a totally new way of programming

— Thinking “Oh, that’s like this thing in Java” will
confuse you, slow you down, make you learn less

Challenges in our way

You might think programming = hack until it
works

— As you begin this semester, please develop the
mindset of a professional:

— Common challenge: type first, think later

* “A year in the lab saves an hour at the library”
* Fact: there is an infinite number of incorrect programs

* Corollary: tweaking your code is unlikely to help

Keep the end in sight

We want to help you learn to write code that is
— Reliable
— Efficient
— Readable
— Testable
— Provable

— Maintainable

OCaml

A pretty good language for writing beautiful
programs

O = Objective, Caml=not important

ML is a family of languages; originally the “meta-language” for a tool

OCaml is awesome because of...

— Variable’s values cannot destructively be changed; makes reasoning about program
easier!

— Makes definition and manipulation of complex data structures easy to express
— Functions can be passed around like ordinary values

— Reduce number of run-time errors

— No burden to write down types of every single variable

— Enables construction of abstractions that work across many data types

— Automated memory management eliminates many run-time errors

Why immutability?

Imperative (mutable) programming:

* commands specify by destructively
changing state
- X = X+1;
—a |:'|_:| —

— p.nhext = p.next.next;

* and functions/methods have side effects

— 1nt wheels(Vehicle v) {
v.s1ze++; return v.numWheels;

¥

Why immutability?

The fantasy of mutability:
— There is a single state
— The computer does one thing at a time

The reality of mutability:

— There is no single state

* Programs have many threads, spread across many cores, spread across
many processors, spread across many computers... each with its own
view of memory

— There is no single program
* Most applications do many things at one time

Why immutability?

Functional (immutable) programming:

expressions specify
— Variables never change value

— Functions never have side effects

The reality of immutability:
— No need to think about state

— Powerful ways to build concurrent programs

Functional vs. imperative

Functional languages:
— Higher level of abstraction
— Easier to develop robust software

Imperative languages:
— Lower level of abstraction
— Harder to develop robust software

Functional languages predict the future

Dismissed as “beautiful, worthless, slow things
professors make you learn in school”:

— Garbage collection
Java [1995], LISP [1958]

— Generics
Java 5 [2004], ML [1990]

— Higher-order functions
C#3.0 [2007], Java 8 [2014], LISP [1958]

— Type inference
C++11 [2011], Java 7 [2011] and 8, ML

Functional languages matter in the real world

e F#, C# 3.0, LINQ (Microsoft)

* Scala (Twitter, LinkedIn, FourSquare)

* Java 8

* Haskell (dozens of small companies/teams)
* Erlang (distributed systems, Facebook chat)
 OCaml (Jane Street)

A GLIMPSE OF OCAML...

Example 1: Sum Squares

// yields X, __.__ 1°
1nt sum_squares(int n) {
sum=0;
for (Int x = 1; X <= n; x++) {
sum = sum + X*X
¥

return sum;

¥

How can you do that without mutability?

Example 1: Sum Squares

// ylelds X, _:__ 17
1nt sum_squares(int n) {
1if (n==0) {
return 0O;
} else {

return n*n + sum_squares(n-1)

¥
¥

Example 1: Sum Squares

(* yle-l'ds 21<=i<=n IZ*)

let rec sum_squares (n:int) : int =
if n=0 then O
else n*n + sum_squares (n-1)

Better yet...

(* y-l'e-l'ds Z1<:i<:n 2 *)
let rec sum_squares n =
if n=0 then 0
else n*n + sum_squares (n-1)

Example 2: Reverse List

// return a copy of x,
// with the order of its elements reversed

List reverse(List x) {
List y = null;
while (x !'= null) {

List t = X.next;
X.next = y;

y = X;
X = t,;
}
return y;

}

Example 2: Reverse List

(* return the reverse of Ist *)
let rec reverse lIst =
match 1st with
[] -> [
h::t -> (reverse t) @ [h]

Example 3: Quicksort

* Describe quicksort in English.

* Describe quicksort in Java. (No.)

e Describe quicksort in OCamil:

(* returns l1st sorted according to < *)
let rec gsort Ist =
match Ist with
| [1 —> []
| pivot::rest -> (* poor choice of pivot *)
let (left,right) = partition ((<) pivot) rest
in (gsort left) @ [pivot] @ (gsort right)

THE SYLLABUS

Course staff

Instructors:

* Michael Clarkson
— PhD 2010 Cornell University

* Mike George
— ABD Cornell University

* Research areas: security and programming languages

* We go by “Prof. Clarkson” and "Prof. George" in this course

TAs and consultants: 28 at last count
— Course administrator (“head TA"): Remy Jette (rcj57)

Course meetings

* Lectures: TR 10:10-11:00 am
— Attendance is expected and will be checked
— If you miss, get notes from another student

* Recitations: mostly MW
— Attendance is expected
— TR sections are effectively MW delayed one day

— You may attend any, regardless of registration, subject to room
capacity; best to stick to one

* Consulting: coverage every day except Monday

Course website

http://www.cs.cornell.edu/Courses/cs3110/2015sp/

* Full syllabus

e Lecture and recitation notes
— Typically go live the night after the lecture

— Supplement, do not replace, attendance

Piazza

Online discussion forum

Primary vehicle for announcements

Monitored almost continuously by staff
Ask for help, don't post solutions
Post anonymously (to classmates)

Post privately (only seen by staff)

Email

* Ifit's about content (e.g., you have a question about
a homework problem), post a message on Piazza

iInstead

— Messages restricted only to instructors probably will get
lost

* Ifit's about your own personal logistics (e.g., you
need to leave town for a funeral), send email to
cs3110-instructors-L@cornell.edu

* But better than that..come talk to us in person!

CMS

* Course Management System

* Grades, regrades, materials we don’t want to post
publicly

— If not, notify Course Administrator and provide your
full name and NetID

* Gets overloaded at due time; submit early

Course materials

* No textbook
— Online course notes

S R .
é’#“ : ..“ \\
PR 1\
L B , A.»:\\._
1,

— If you want a book, Real World OCaml is Real World
good and written 2/3 by Cornellians OCarmnl
— Other free resources linked on website

& Jason Hickey

* i>clickers
— Required; will be used to take attendance
— Buy one at Cornell Store
— Will not use i>clicker GO app in this course

Problem Sets

Five problem sets (PS’s)
— Plus an ungraded, uncollected PSO

— Usually soft deadline on Thursdays at 11:59 pm,
followed by hard deadline 48 hours later
* 25% late penalty after soft deadline

— Electronic submission by CMS, never by email
— Length of time usually about 1.5 weeks

— First individual, then pairs, then small teams

Exams

* Two prelims
— Prelim 1: 03/10/15
— Prelim 2: 04/21/15

— Two offerings each night: 5:15-7:15 and 7:30-9:30
* No other makeups will be offered
* If you miss without advance permission, you get a zero

* Final
— University will announce date and time later

Grading

* Problem sets: 40%
* Prelims: 15% each
* Final: 25%

* Other factors: 5%

Academic integrity

* You are bound by the Cornell Code of Academic Integrity
and the CS Department Code of Academic Integrity

— Both linked from course website
— You are responsible for understanding them

* In 3110, you may not share code with anyone
— (except partner or teammates)

* In 3110, you may not copy code from online sources
* If you have a question about what is or is not allowed,

 The course staff uses automated software to detect
cheating. It works.

Upcoming events

[today] PS 0 is out now
— Start by getting OCaml installed and working
— We provide a virtual machine (VM) that makes this relatively easy
[Saturday] OCaml Install Session
— Upson 315, noon to 8 pm
— Drop in at any time if you need help with VM or OCaml
[Monday] Recitations begin (none today)
[Tuesday am] i>clickers start in lecture
[Tuesday pm] Consulting hours and office hours start
— Drop by Profs offices this afternoon if you need something immediately
— Regular hours will be posted on Piazza next Tuesday

THIS IS 3110

