
CS 3110 Spring 2015 Soft deadline: 4/16
Problem Set 4 Hard deadline: 4/18
Version 0 (last modified April 6, 2015)

Overview: This problem set revolves around a simple interface: lists that support random
access. You will implement this interface using a variety of data structures, and you will
analyze your code in a variety of ways.

Objectives:

• Implementing data structures with interesting invariants

• Testing and specification

• Using modules and functors to structure code

• Formal proofs of correctness

• Asymptotic worst-case and amortized complexity analysis

• Performance testing

Additional reading:

• Real World OCaml, Chapter 9: Functors.

• Lectures 10–12, 15-17; Recitations 15–17.

• Map module documentation

• QCheck.Arbitrary API

Getting help: When you need help, there are many resources available to you. The CS
3110 Piazza site is a great place to ask questions. Course staff and other students are very
active and will typically respond within a couple hours. Consulting hours are a great place
to ask about anything in this assignment and future assignments, as well as other questions
you may have about OCaml or setting up your environment.

1

https://realworldocaml.org/v1/en/html/functors.html
http://www.cs.cornell.edu/Courses/cs3110/2015sp/schedule.php
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Map.Make.html
http://cedeela.fr/~simon/software/qcheck/QCheck.Arbitrary.html

Part 1: The ListLike interface (40 points)

For the first part of the assignment, you will work with the ListLike interface, defined in
ListLike.mli. The ListLike module contains a few interfaces and functors:

ListLike.CORE defines the core list operations like cons, lookup, and update that every
implementor must provide.

Most of these functions are familiar, but decons is unusual. decons deconstructs a
non-empty list into the head and tail, or returns None if the list is empty. decons

makes pattern-matching on ListLike objects easy:

match decons l with

| None -> (* empty case *)

| Some (h, tl) -> (* h::tl case *)

ListLike.EXTENSION contains useful functions like map and fold that users of the mod-
ule can use. The ListLike.Extend functor provides implementations of these functions
for any module that implements ListLike.CORE.

Implementations of the CORE interface can include Extend(Core) to get the EXTENSION
functions “for free”. For example, your ListImpl module need only define the ListLike.CORE
functions; the include Extend(Core) function at the bottom of listLike.ml will au-
tomatically include your definitions of map, fold, and so on:

utop # module M = ListImpl ;;

module M : sig

module Core

(* implemented *)

val equals : ’a t -> ’a t -> bool

val empty : ’a t

val cons : ’a -> ’a t -> ’a t

val decons : ’a t -> (’a * ’a t) option

val lookup : ’a t -> int -> ’a option

val update : ’a t -> int -> ’a -> ’a t option

val length : ’a t -> int

(* inherited *)

val to_list : ’a t -> ’a t

val of_list : ’a t -> ’a t

val map : (’a -> ’b) -> ’a t -> ’b t

val fold_left : (’a -> ’b -> ’a) -> ’a -> ’b t -> ’a

val fold_right : (’b -> ’a -> ’a) -> ’b t -> ’a -> ’a

end

2

ListLike.S combines the ListLike.CORE and ListLike.EXTENSION module types, and is
the interface that users of ListLike implementations will typically rely on (just as
modules with a “main type” typically call that type “Module.t”, modules with a
“main interface” often call that interface “Module.S”.

Combining these interfaces makes it easy to create .mlis for modules that simply
implement the interface. Note, for example, that the file mapImpl.mli only contains the
line include ListLike.S. Modules that wish to expose their types (such as ListImpl)
can do so by writing include ListLike.S with type t := <the concrete type>

(see listImpl.mli for an example).

ListLike.Spec will contain generic properties that any implementation of the ListLike.CORE
interface must satisfy. Each property should have a corresponding function that checks
the property. For example, the equals function should be reflexive (all lists should
equal themselves) and symmetric (if l1 equals l2 then l2 should equal l1). These
properties are checked by the equals_self and equals_symmetry examples that we
have provided:

let equals_self l =

C.equals l l

let equals_symmetric (l1,l2) =

if C.equals l1 l2 then C.equals l2 l1 else test_passes

The ListLike.Spec functor should also contain randomized tests for each of the prop-
erties. These are designed to be used with the TEST_MODULE command; for example
the ListImpl implementation contains the line

TEST_MODULE "ListImpl spec tests" = ListLike.Spec(Core)

When run with cs3110 test listImpl.ml, the TEST_MODULE will cause all of the
TESTs in ListLike.Spec(Core) to be run.

3

To complete part 1 of this assignment, complete the following tasks. These tasks can all be
completed independently and in any order; in fact we find it useful to split the implementation
of ListLike.Spec and ListImpl.Core between different partners; developing the tests and
implementation separately can help to shake out misunderstandings about the spec.

The rest of the problem set builds on this work, so we recommend finishing this part early.

Exercise 1: Write ListLike.Spec properties.

(a) The provided implementation of ListLike.Spec only tests the two example proper-
ties of described above. List all of the properties that you think the functions in
the ListLike.CORE module should satisfy. For each property, create a correspond-
ing function in the ListLike.Spec module. Be sure to document these functions in
the listLike.mli (note that for this project you should change listLike.mli, though
your code should still work if you replace your submitted listLike.mli with the release
listLike.mli).

For full credit, your specs should be:

• Strong enough: broken implementations should fail to satisfy at least one property

• Not too strong: all correct implementations should satisfy all properties

• Concise: avoid redundant properties so that it is easy to read all of them.

A good way to start is to think about how the functions should interact with each other:
what can you say about decons (cons x l) for example?

(b) For each of the properties tests you have implemented, add a TEST to ListLike.Spec

that uses QCheck to test the property on random instances.

QCheck is a library that takes a specification function and generates many random
values to pass to that function. You will interface with the QCheck library by using the
function assert_qcheck.

The assert_qcheck function adapts the QCheck library to work with the cs3110 tools.
It has the following type:

val assert_qcheck : ’a QCheck.Arbitrary.t -> (’a -> bool) -> unit

An ’a QCheck.Arbitrary.t is essentially a function that generates random values of
type ’a; assert_qcheck uses this function to generate many values and passes them to
the property given by the second argument.

Within the ListLike.Spec(C) implementation we have provided an “arbitrary” C.t.
That is, we have provided a the value

val arb_listlike : (char C.t) Arbitrary.t

This allows you to test properties that depend on a single list-like value:

4

TEST_UNIT "equals_self test" =

assert_qcheck arb_listlike equals_self

The QCheck.Arbitrary module provides functions for easily combining arbitrary values
to create new arbitrary values. For example, we have provided an arbitrary pair of lists:

let arb_listlike_pair : (char C.t * char C.t) Arbitrary.t =

Arbitrary .(pair arb_listlike arb_listlike)

arb_listlike_pair can be used to test properties that depend on pairs of lists:

TEST_UNIT "equals_symmetric test" =

assert_qcheck arb_listlike_pair equals_symmetric

Exercise 2: Implement ListImpl.Core.

In the file listImpl.ml, implement the ListLike.CORE functions using a plain OCaml list
as a the underlying data structure. Note that lookup and update may be inefficient!

Exercise 3: Implement MapImpl.Core.

In the file mapImpl.ml, implement the ListLike.CORE functions using the Map module from
the standard library. The Map module uses a balanced binary search tree to map from keys
to values; you can use an integer as the key to the map, allowing you to easily find or update
an element at a given offset.

Be sure to write a rep_ok function in mapImpl.ml to document and test your representa-
tion invariant. You should also clearly specify your abstraction function.

Exercise 4: Implement ListLike.Extend.

In the file listLike.ml, implement the Extend functor to provide default implementations
of the EXTENSION interface based on the CORE operations.

5

http://cedeela.fr/~simon/software/qcheck/QCheck.Arbitrary.html

Part 2: The Bits implementation (30 points)

In this part, you will implement a functional data structure that provides fast random access
to a list-like data structure.

The motivating idea behind this data structure is that a näıve implementation of lists
closely mirrors a unary implementation of the natural numbers:

type nat = Zero | Succ of nat

type ’a list = Nil | Cons of ’a * ’a list

Taking the tail of a list is analogous to subtracting one from a number

let pred = function

| Zero -> failwith "Error: pred"

| Succ n -> n

let tail = function

| Nil -> failwith "Error: tl"

| Cons (x,xs) -> xs

while appending two lists is analogous to adding two numbers

let rec add = function

| Zero ,m -> m

| Succ n, m -> Succ (add (n,m))

let rec append = function

| [],ys -> ys

| Cons(x,xs) ,ys -> Cons(x,(append (xs,ys)))

This analogy suggests that we can think of a list as a natural number that carries some
extra information. Container abstractions designed with this analogy in mind are called
numerical representations.

In this exercise we will use a numerical representation for lists that is based on a binary
representation of numbers. In the binary representation of a natural number, a one in the
kth position stands for 2k. You can think of this as representing 2k applications of the
Succ constructor. Similarly, in the binary representation of a random access list, a ”one” in
the kth position contains 2k elements; in a sense it represents 2k applications of the Cons
constructor.

Of course, the ”ones” in the random access list must actually store the 2k entries in the
list. Since there are exactly 2k entries corresponding to the kth digit, we can store the entries
in a completely balanced binary tree. We will use the following representation:

type ’a tree = Leaf of ’a | Node of ’a tree * ’a tree

type ’a tbit = Zero | One of ’a tree

type ’a bitlist = ’a tbit list

For example, suppose that we wish to store the list [0; 7; 4; 2; 1; 3; 9; 1; 2; 6; 5].
This list contains 11 elements and the binary representation of 11 is 0b1011, so the ral-
ist representation should take the form [One _; One _; Zero; One _]. The digit in the

6

zeroth place corresponds to the first 20 elements ([0]). The bit in the first place cor-
responds to the 21 elements [7; 4]. The bit in the second place is Zero, so it con-
tributes no elements to the total; the digit in the third place corresponds to the 23 elements
[2; 1; 3; 9; 1; 2; 6; 5].

We can draw this representation as follows:

To complete this part of the problem set you need to complete the following task:

Exercise 5: Implement bitsImpl.ml.

In the file bitsImpl.ml, implement the CORE functions using the binary representation of
lists described above.

Also implement the function rep_ok function to check the representation invariant of an
’a bitlist. In particular we need to check if the ’a tree at each position is a perfectly
balanced binary tree of the correct size and that the ’a bitlist does not have trailing
Zeros.

7

Part 3: Written analysis (40 points)

In this part of the assignment, you will prove a few properties of your BitsImpl imple-
mentation. See the companion files compendium.pdf and blackbook.pdf for examples of
proofs.

Exercise 6: BitsImpl.cons produces well-formed lists.

In the file cons correct.pdf or cons correct.txt, prove that if l is a valid bitlist, then
cons x l is also a valid bitlist.

If your proof is inductive, be sure to clearly indicate what your inductive hypothesis is
and where you are using it. Also be sure to check that it applies to the variables you are
applying it to!

Exercise 7: BitsImpl.lookup runs in O(log n) time.

In the file lookup runtime.pdf or lookup runtime.txt, prove that the worst-case running
time of your implementation of BitsImpl.lookup l is O(log n) where n is BitsImpl.length l.

Hint: Your implementation of lookup i l will probably proceed in two phases: first you
must find the tree t containing the ith entry, then you will locate the ith entry in t. Prove
(inductively) that each of these two operations can execute in O(log n) time, and then use
that fact to conclude that lookup i l itself completes in O(log n) steps.

Exercise 8: BitsImpl.cons runs in amortized O(1) time.

In the file cons runtime.pdf or cons runtime.txt, prove that the amortized running time
of multiple cons operations is O(1) per operation. You may use any of the methods discussed
in lecture. Here are some hints for each approach:

• For the aggregate method, try counting the number of times each position in the bit
list changes from a One to a Zero. For example, the first bit in the list resets on every
other cons insertion, while the second bit in the list resets on every fourth cons.

You can also reason about the time taken for an insertion that resets the kth bit.
Multiply these together and then sum them to find the total running time,

• For the banker’s method or potential methods, note that having lots of Ones in the
list is what causes a particular operation to take a long time. Try associating accounts
with each One in the bit list, or using the number of Ones as the potential function.

8

Exercise 9: Performance measurement.

As you know, asymptotic complexity is an approximation of actual running time. To measure
the real-world performance of your code, design and run tests that run various operations
on your three ListLike implementations with lists of varying sizes.

In the file performance.pdf or performance.txt, report on the results of these measure-
ments. Be sure to include:

(a) Instructions for running your tests and information about the environment that you ran
your experiments in

(b) A plot (or plots) of run-time versus input size

(c) Comparison of your results with the theoretical bounds shown above

(d) Discussion of any surprises found in the data

To measure wall-clock running time, you can call the Sys.time function both before and
after calling your function; the difference between the two times will tell you how long your
function took to execute.

It will often be the case that the running time for your functions will be comparable to the
resolution of the system clock. To get reliable data, we recommend measuring the running
time for multiple executions and dividing by the number of executions.

Running time can also depend on other variables such as the state of the cache, the garbage
collector, or background processes that may be running on the system. We recommend
collecting statistics from multiple executions and reporting combined statistics (e.g. by
providing a scatter plot or error bars).

Important note: be sure you disable your rep_ok function so that it doesn’t skew your
results!

9

