CS 3110 Spring 2015 Soft deadline: 3/26/15 11:59pm
Problem Set 3 Hard deadline: 3/28/15 1:00pm
Version 0 (last modified March 12, 2015)

Overview

In this assignment you will implement several functions over infinite streams of data, an
algorithm for inferring types, and an interpreter for OCalf - a functional language containing
the core features of OCaml.

Objectives
This assignment should help you develop the following skills:

e Developing software with a partner.

Working with a larger OCaml source code base.

Using software development tools like source control.

Understanding the environment model and type inference.

e Experience with infinite data structures and lazy evaluation.

Additional references
The following supplementary materials may be helpful in completing this assignment:

e Lectures 7, 8

Recitations 7, 8

The OCaml List Module and the Printf Module

Git Tutorial

Real World OCaml, Chapter 6

Academic integrity

You are allowed to work with one other student in this class for this problem set. The sharing
of code is only allowed between you and your partner; sharing code among groups is strictly
prohibited. Please review the course policy on academic integrity.

http://www.cs.cornell.edu/courses/cs3110/2015sp/lectures/7/lec07.pdf
http://www.cs.cornell.edu/courses/cs3110/2015sp/lectures/8/lec08.pdf
http://www.cs.cornell.edu/courses/cs3110/2015sp/recitations/7/rec07.php
http://www.cs.cornell.edu/courses/cs3110/2015sp/recitations/8/rec08.php
http://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Printf.html
https://git-scm.com/docs/gittutorial
https://realworldocaml.org/v1/en/html/index.html
http://www.cs.cornell.edu/Courses/cs3110/2015sp/syllabus.php#academic_integrity

Provided code

This is a larger project than those you have worked on in PS1 and 2. Here is an overview
of the release code. We strongly encourage you to read all of the .mli files before you
start coding, so that you know what functions are available and understand the structure
of the source code.

Here is a brief list of the provided modules:

Streams is the skeleton code for part 2.

Eval and Infer are the skeleton code for parts 3 and 4. In addition to the functions that you
must implement, there are various unimplemented helper functions defined in the .ml
files. We found these helper functions useful when we implemented the assignment,
but you should feel free to implement them, change them, extend them, or remove
them. They will not be tested.

Printer contains functions for printing out values of various types. This will be extremely
helpful for testing and debugging.

Examples and Meta These modules contain example values to help you start testing.
Examples contains all of the examples from this document; Meta contains an extended
example for parts 3 and 4.

Ast and TypedAst These modules contain the type definitions for parts 3 and 4 respec-
tively. The TypedAst module also contains the annotate and strip function for
converting between the two.

Parser contains parse functions that allow you to read values from strings. It will be useful
for testing and debugging parts 3 and 4.

Running your code

In addition to using c¢s3110 test to test your code, we expect you to interact extensively
with your code in the toplevel. To support this, we have provided a .ocamlinit file'that
automatically makes all of your compiled modules available in the toplevel. For convenience,
it also opens many of them.

A .ocamlinit file is just an OCaml file that is automatically #used by the toplevel when
it starts. We encourage you to add to it; any time you find yourself typing the same thing
into the toplevel more than once, add it to your .ocamlinit!

In order for the files to load correctly, you must compile them first. If you change
them, the changes will not be reflected in the toplevel until you recompile, even if
you restart it. The file examples.ml references all other files in the project, so you should
be able to recompile everything by simply running cs3110 compile examples.ml.

!'Note that on Linux, files whose names start with ‘. are hidden; use 1s -A to include them in a directory
listing.

Part 1: Source control (5 points)

You are required to use some version control system for this project. We rec-
ommend using git. As part of good software engineering practices, you should use version
control from the very beginning of the project. For a tutorial on git, see the git tutorial in
the additional references section.

You will submit your version control logs in the file logs.txt. These can be extracted
from git by running “git log --stat > logs.txt” at the command line.

Part 2: Lazy Evaluation (30 points)

A stream is an infinite sequence of values. We can model streams in OCaml using the type

type ’a stream = Stream of ’a * (unit -> ’a stream)

Intuitively, the value of type ’a represents the current element of the stream and the
unit -> ’a stream is a function that generates the rest of the stream.

“But wait!” you might ask, “why not just use a list?” It’s a good question. We can create
arbitrarily long finite lists in OCaml and we can even make simple infinite lists. For example:

let rec sevens = 7 :: sevens;;
val sevens : int list =
[z, 7; 7; 7; 7; 7; ...]

However, there are some issues in using these lists. Long finite lists must be explicitly
represented in memory, even if we only care about a small piece of them. Also most standard
functions will loop forever on infinite lists:

let eights = List.rev_map ((+) 1) sevens;;
(loops forever)

In contrast, streams provide a compact, and space-efficient way to represent conceptually
infinite sequences of values. The magic happens in the tail of the stream, which is evaluated
lazily—that is, only when we explicitly ask for it. Assuming we have a function

map_str : (’a -> ’b) -> ’a stream -> ’b stream that works analogously to List.map
and a stream sevens_str, we can call

let eights_str = map_str ((+) 1) sevens_str;;
val eights_str : int stream

and obtain an immediate result. This result is the stream obtained after applying the map
function to the first element of sevens_str. Map is applied to the second element only when
we ask for the tail of this stream.

In general, a function of type (unit -> ’a) is called a thunk. Conceptually, thunks
are expressions whose evaluation has been delayed. We can explicitly wrap an arbitrary
expression (of type ’a) inside of a thunk to delay its evaluation. To force evaluation, we
apply the thunk to a unit value. To see how this works, consider the expression

let v = failwith "yolo";;
Exception: Failure "yolo"

which immediately raises an exception when evaluated. However, if we write

let lazy_v = fun () -> failwith "yolo";;
val lazy_v : unit -> ’a = <fun>

then no exception is raised. Instead, when the thunk is forced, we see the error

lazy_v O);;
Exception: Failure "yolo"

In this way, wrapping an expression in a thunk gives rise to lazy evaluation.

Exercise 1: Implementing Stream Functions (20 points).

(a) Implement a function

take : int -> ’a stream -> ’a list

that returns the first n elements of the stream s in a list. If n < 0, return an empty
list.

(b) Implement a function

repeat : ’a -> ’a stream

that produces a stream whose elements are all equal to x.

(¢) Implement a function

map : (’a -> ’b) -> ’a stream -> ’b stream

that (lazily) applies the input function to each element of the stream.

(d) Implement a function

diag : ’a stream stream -> ’a stream

that takes a stream of streams of the form

50,0 S0,1 50,2
51,0 S1,1 S1,2
$20 821 S22

and returns the stream containing just the diagonal elements

50,051,152,2

(e) Implement a function

suffixes : ’a stream -> ’a stream sStream

that takes a stream of the form
So S1 S22 83 54

and returns a stream of streams containing all suffixes of the input

Sop S1 S22
51 S2 53
S2 83 S4
(f) Implement a function
interleave : ’a stream -> ’a stream -> ’a streanm
that takes two streams sgs; --- and fgt; - - - as input and returns the stream
SotositiSata - - -

Exercise 2: Creating Infinite Streams (10 points).

In this exercise you will create some interesting infinite streams. We highly recommend using
the printing functions we have provided in printer.ml. A part of being a good software
engineer is being able to implement tools that will help you test and implement code. You
will have the opportunity to implement your own print function in a later exercise, but for
now, you may use the ones we have provided. See printer.mli for more details.

(a) The Fibonacci numbers a; can be specified by the recurrence relation ag = 0, a; = 1,
and a,, = a,_1 + a,_o. Create a stream fibs : int stream whose nth element is the
nth Fibonacci number:

print_stream_int (fibs ());;
(o, 1, 1, 2, 3, 5, 8, 13, ...]

(b) The irrational number 7 can be approximated via the formula

= (1)
—4 .
T ;Zn—l—l

Write a stream pi : float stream whose nth element is the nth partial sum in the
formula above:

print_stream_float (pi));;

[4., 2.66666666667, 3.46666666667, 2.89523809524,
3.33968253968, 2.97604617605, 3.28373848374,
3.017071871707, ...]

(c¢) The look-and-say sequence a; is defined recursively; ay = 1, and a,, is generated from
a,—1 by reading off the digits of a,_; as follows: for each consecutive sequence of
identical digits, pronounce the number of consecutive digits and the digit itself. For
example:

— the first element is the number 1,

the second element is 11 because the previous element is read as “one one”,

the third element is 21 because 11 is read as “two one”,

the fourth element is 1211 because 21 is read as “one two, one one”,

— the fifth element is 111221 because 1211 is read as “one one, one two, two one”.

Write a stream look_and_say : int list stream whose nth element is a list con-
taining the digits of a, ordered from most significant to least significant. Similar to
the Fibonacci and pi streams, we strongly suggest you test your implementation. To
print the look-and-say sequence, you can use

print_stream_int_list (look_and_say ());;

(011, 111, (211, [1211]1, [11122171,
[31 22111, [13112221]1],
[1 1132132111, ...]

Part 3: ML interpreter (40 points)

In this part of this assignment, you will implement the evaluation of an interpreter for a
subset of OCaml called OCalf. This will provide functionality similar to the top-level loop
we have been using for much of the semester.

Background on interpreters

An interpreter is a program that takes a source program and computes the result described
by the program. An interpreter differs from a compiler in that it carries out the computations
itself rather than emitting code which implements the specified computation.

A typical interpreter is implemented in several stages:

1. Parsing: the interpreter reads a string containing a program, and converts it into a
representation called an abstract syntax tree (AST). An AST is a convenient data struc-
ture for representing programs: it is a tree containing a node for each subexpression;
the children of the node are the subexpressions of the expression. For example, here is
an abstract syntax tree representing the program fun x -> 3 + x:

arse fun
e o
< print 3 / \ X

"fun x -> 3 + x"

utop# parse_expr "fun x -> 3 + x'";;
- : expr = Fun ("x", BinOp (Plus, Int 3, Var "x"))

2. Type checking: the interpreter verifies that the program is well-formed according to
the type system for the language—e.g. the program does not contain expressions such
as 3 + true.

3. Evaluation: the interpreter evaluates the AST into a final value (or runs forever).

We have provided you with a type Ast.expr that represents abstract syntax trees, as
well as a parser that transforms strings into ASTs and a printer that transforms ASTs into
strings. Your task for this part will be to implement evaluation (typechecking is part 4).

Your tasks

For this part of the assignment, you will be working in the file eval.ml. In particular, you
will implement the function

eval : Eval.environment -> Ast.expr -> Eval.value

which evaluates OCalf expressions as prescribed by the environment model. For example, we
can evaluate the expression “if false then 3 + 5 else 3 x* 5” in the empty environment
as follows:

eval [] (parse_expr "if false then 3 + 5 else 3 * 5"));;
- : value = VInt 15

OCalf has the following kinds of values:

1. Unit, integers, booleans, and strings.
2. Closures, which represent functions and the variables in their scopes.

3. Variants, which represent user-defined values like Some 3 and None; unlike OCaml, all
variant values must have an argument. For example, None and Nil are represented as
None () and Nil Q).

4. Pairs, which represent 2-tuples. Unlike OCaml, all tuples are pairs; you can represent
larger tuples as pairs of pairs (e.g. (1, (2,3)) instead of (1,2,3)).

As a simple example of evaluation, using the notation learned in class, [1 :: 7 + 35 || 42.
Your interpreter should evaluate both sides of the + operator, which are already values (7
and 35), and then return an integer representing the sum of values 7 and 35, i.e. 42. More
details and examples on the environment model can be found in the lecture notes.

Because you can run OCalf programs without type checking them first, your interpreter
may come across expressions it can’t evaluate (such as 3 + true ormatch 3 with | 1 -> false).
These expressions should evaluate to the special value VError.

Exercise 3: Implement eval without LetRec or Match (30 points).

We recommend the following plan for this exercise:

(a) Implement eval for the primitive types (Unit, Int, etc.), BinOp (which represents
binary operations like +, * and "), If, Var, Fun, Pair, and Variant.

Note: for OCalf, the comparison operators =, <, <=, > >= and <> only operate on
integers.

(b) Implement eval for App and Let.

http://www.cs.cornell.edu/courses/cs3110/2015sp/lectures/7/lec07.pdf

Exercise 4: Implement LetRec (5 points).

Extend eval to include the evaluation of LetRec.

Evaluating let rec expressions is tricky because you need a binding in the environment
for the defined before you can evaluate its definition. In lecture we extended the definition of
a closure to account for recursive functions; in this assignment we will use another common
technique called backpatching.

To evaluate the expression let rec f = el in e2 using backpatching, we first evaluate
el in an environment where f is bound to a dummy value. If the value of £ is used while
evaluating el, it is an error (this would occur if the programmer wrote let rec x = 3 + x
for example), however it is likely that el will evaluate to a closure that contains a binding
for £ in its environment.

Once we have evalutated el to v1, we imperatively update the binding of £ within v1 to
refer to vi. This “ties the knot”, allowing v1 to refer to itself. We then proceed to evaluate
e2 in the environment where f is bound to v1.

To support backpatching, we have defined the environment type to contain binding refs
instead of just bindings. This enables the bindings to be imperatively updated.
Exercise 5: Implement Match (5 points).

Extend eval to support match statements. Take care to correctly bind the variables that
are defined by the pattern. You may find it helpful to implement a function

find_match : pattern -> value -> environment option

to check for a match and return the bindings if one is found.

If a given match expression does not match any of the patterns in a match expression,
the pattern matching is said to be inerhaustive. However, given pattern matchings, you
do not need to check if the pattern matchings are inexhaustive or if there are
repetitive match cases. Your implementation should return VError if pattern matching
fails at run-time.

Part 4: Type inference (50 points)

For the third part of the assignment, you will implement type inference for your interpreted
language. OCaml’s type inference algorithm proceeds in three steps. First, each node of the
AST is annotated with a different type variable. Second, the AST is traversed to collect a
set of equations between types that must hold for the expression to be well-typed. Finally,
those equations are solved to find an assignment of types to the original variables (this step
is called wnification).

For example, suppose we were typechecking the expression (fun x -> 3 + x) (this ex-
ample is infer_example in the Examples module of the provided code). The annotation
phase would add a new type variable to each subexpression, yielding

print_aexpr (annotate infer_example);;

(fun (x:’°t04) -> ((x : ’t02) + (3 : ’t01) :’°t03) :’t05)
fun fun:’t05
- [amoiaie ;o
x ; x:£04 +003
/ \ - L
3 X 3:°t02 x:’t01

Next, we would collect equations from each node. From our typing rules, we know
that (fun x -> e) : t1 -> t2 if e:t2 under the assumption x:t1. Stated differently,
(fun (x:t1) -> e:t2) : t3if and only if t3 = t1 -> t2. Therefore, while collecting
constraints from the fun node above, we output the constraint t05 = >t04 -> ’t03.

Similarly, we must also collect constraints from the + node. Our typing rules tell us that
el + e2 : intifandonlyifel : intande2 : int. Put another way, (el:t1) + (e2:t2)
if and only if t1 = int, t2 = int, and t3 = int. Therefore, while collecting constraints
from the + node above, we output the three equations ’t03 = int, ’t02 = int, and
’£01 = int.

We would also recursively collect the constraints from the 3 node and the x node. The rules
for typing 3 say that 3 : tif and only if t = int, so we output the constraint *t02 = int.
The rules for variables tell us that if x had type t when it was bound then it has type t
when it is used. Therefore, when collecting constraints from the x:’t01 node, we output
the equation t01 = ’t04.

Putting this together, we have

print_eqns (collect [] (annotate infer_example));;

’t01 = int ’£03 = int
’£02 = int ’t04 = ’t01
’t02 = int ’t05 = ’t04 -> ’t03

Finally, these equations are solved in the unification step, assigning int to ’t01 through
’£04, and int->int to >t05. Substituting this back into the original expression, we have

10

: 13

print_aexpr (infer [] infer_example);;
(fun (x:int) -> ((3 : int) + (x : int) :int) : int -> int)

If the constraints output by collect are not satisfiable (for example they may require
int = bool or ’t = ’t -> ’t), then it is impossible to give a type to the expression, so a
type error is raised.

If the system is underconstrained, then there will be some unsubstituted variables left over
after the unified variables are plugged in. In this case, these variables could have any value,
so the typechecker gives them user-friendly names like ’a and ’b.

Your type inference tasks

We have provided the annotate and unify phases of type inference for you; your job is to
implement the collect phase.

Exercise 6: Implement collect without variants (40 points).

We recommend the following plan for implementing collect.

1. Implement collect for Fun, Plus, Int, and Var. This will allow you to typecheck the
infer_example example as described above.

2. Implement the collect function for all syntactic forms except Variant and Match.

3. Implement the collect function for Match statements, but leave out the handling of
PVariant patterns. Match statements are a bit trickier because you need to make sure
the bindings from the patterns are available while checking the bodies of the cases.

Exercise 7: Implement collect with variants (10 points).

Extend collect to handle variant types. Variant types are tricky because you need to make
use of a type definition to determine how the types of arguments of a constructor relate to
the type that the constructor belongs to.

Type definitions are represented by TypedAst.variant_specs, and a list of them is pro-
vided to the collect function. Each variant spec contains a list vars of “free variables” (like
the ain ’a last), a type name ("list" in the case of ’a 1list), and a list of constructors
(with their types). See Examples.list_spec and Examples.option_spec for examples.

Deriving the correct constraints from a variant_spec requires some subtlety. Consider
the following example:

(Some (1 : t1) : t2, Some ("where" : t3) : t4)

11

(this is Examples.infer_variant). A naive way to typecheck it would be to collect the
constraints ’t2 = ’a option and ’tl = ’a from the Some 1 subexpression, and the con-
straints t4 = ’a option and ’t3 = ’a from the Some "where" subexpression.

However this would force ’a to be both string and int, so the expression would not
typecheck. A better approach is to think of the constructor type as a template from which you
create constraints. You can correctly generate the constraints by creating a new type variable
for each of the free variables of the variant_spec, and substituting them appropriately in
the constructor’s type.

In the above example, you might create the variable *x for ’a while collecting Some 1,

and output the constraints >t1 = ’x and ’t2 = ’x option, and you might create the vari-
able ’y for ’a while collecting Some "where", and output the constraints ’t3 = ’y and
’t4 = ’y option. This would allow infer_variant to type check correctly.

Exercise 8: [Optional] Implement let-polymorphism (0 points).

Note: This question is completely optional and will not affect your grade in any
way.

Note 2: This problem may require you to reorganize your code somewhat. Make sure you
make good use of source control, helper functions, and unit tests to ensure that you don’t
break your existing code while working on it!

The type inference algorithm described above allows us to give expressions polymorphic
types: fun x -> x will be given the type ’a -> ’a.

However, it does not let us use them polymorphically. Consider the following expression:

let (any:t1) = (fun (x:t3) -> (x:t4)):t2 in (any 1, any "where')

(this is Examples.infer_poly). OCaml will give this expression the type int * string,
but our naive inference algorithm fails.

The problem is similar to the subtlety with variants above: we will generate the constraints
(typeof any) = (typeof 1) -> t2and (typeof any) = (typeof "where") -> t2, but
these constraints can only be solved if int = typeof 1 = typeof "where'= string.

The solution is also similar: every time a variable defined by a let expression is used, we
create a new type variable corresponding to the use. We use the constraints generated while
type checking the body of the let as a template for a new set of constraints on the new
variable. Using the constraints from the bodies of lets as templates is called let-polymorphism.

In the above example, while type checking the body of the let expression, we will gen-
erate the constraints t1 = t2, t2 = t3->t4, and t3 = t4. While checking the expression
(any:t5) 1, we can recreate these constraints with new type variables t1’, t2’, and so on.
We will output the constraints t1°=t2’, t2° = t3’->t4’ and t3’=t4’. We also will output
the constraint t5=t1’.

Because the type variables are cloned, they are free to vary independently. Because we
have cloned their constraints, they must be used in a manner that is consistent with their
definition.

12

Part 5: Written questions (10 points)

In the file written.txt or written.pdf, answer the following questions.

Exercise 9: Unification (5 points).

We did not ask you to implement unify, but the algorithm is essentially the same as the one
you use to solve algebraic equations. To give you a sense of how it works, solve the following
type equations for ’t1, *t2, and ’t3.

’th = t4 -> ’t7 ’t1l = t6 -> ’t5H
’t5 = int -> ’t6 ’£2 = %7 list
’t6 = Dbool ’t3 = bool x* ’t4

Exercise 10: Factoring (5 points).

The type definitions Ast.expr and TypedAst.annotated_expr are nearly identical. More-
over, there are a number of simple helper functions that look very similar.

Describe how you might create a single type and helper function that make the definitions
of expr, annotated_expr, annotate, strip, and subst_expr all one-liners.

Be sure to make it possible to create an expr without any reference to types (that is, don’t
just define expr as a synonym for annotated_expr).

Exercise 11: Feedback (0 points).

Let us know what parts of the assignment you enjoyed, what parts you didn’t enjoy, and
any other comments that would help us improve the assignment for the future.

What to submit

You should submit the following files on CMS:

e streams.ml containing your stream implementations

e eval.ml containing your interpreter

e infer.ml containing your type checker

e written.txt or written.pdf containing your responses to the written questions

e logs.txt containing your source control logs

13

