
CS 3110 Spring 2015 Soft deadline: 03/05/15 11:59 pm
Problem Set 2 Hard deadline: 03/07/15 11:59 pm
Version 2 (last modified February 26, 2015)

Revision log

In the main body of the writeup, revisions are marked in orange.

• [02/26/15] Corrected example output in exercise 16. Also corrected public test file.

Objectives

• Practice using the environment model of evaluation.

• Explore the tradeoffs between recursive functions, folds, and library functions.

• Learn about the List library module.

• Use trees to represent program expressions and their evaluation.

• Generalize the idea of folding to trees.

Recommended reading

The following materials should be helpful in completing this assignment:

• Course readings: lectures 4, 5, and 6; recitations 4, 5, and 6

• The CS 3110 style guide

• The OCaml tutorial

• Real World OCaml, Chapters 1–3

• The OCaml List Module

• The OCaml Pervasives Module (especially exceptions, unit, and floating-point arith-
metic)

• The Assertions module (especially assert_true, assert_raises, and assert_equal)
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What we supply

We provide these files as part of the release code:

1. ps2.ml, which is a template for your solution. You do not strictly need to use this file,
but it should help get you started.

2. ps2.mli, which is an interface file giving the names and types of the values that your
solution must define. You are required to adhere to these names and types. Solutions
that do not adhere to them will be penalized.

3. ps2 test public.ml, which is a small unit test file. Solutions that do not pass these
test cases will receive minimal credit.

To ensure that your solution is compatible with the course staff’s test suite, we strongly
encourage you never to modify either the provided interface or the provided public test
cases.

What to turn in

Submit these files on CMS:

1. A file ps2written.pdf containing your answers to the written portions of this problem
set, which are identified below as “[written]”.

2. Files ps2.ml and ps2 test.ml containing your solutions and unit tests for the coding
exercises of this problem set, which are identified below as “[code]”.

Academic integrity

This problem set is to be completed individually. Sharing of code is strictly prohibited.
Please review the course policy on academic integrity.

Prohibited OCaml features

Imperative features—such as ref’s, the Array module, and mutable fields—are not permit-
ted in your solutions to this problem set. You have not seen these features in lecture or
recitation, so we doubt you’ll be tempted. Your solutions may not link in any additional
libraries.
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Grading issues

Names and types: You are required to adhere to the names and types given in the
problem set instructions. If your code does not compile against and pass all the tests in the
provided public test file(s), your solution will receive minimal credit.

Code style: Refer to the CS 3110 style guide and lecture notes. Ugly code that is func-
tionally correct will nonetheless be penalized. Take extra time to think and find elegant
solutions.

Late submissions: Carefully review the course policy on submission and late assignments.
Verify before the deadline on CMS that you have submitted the correct version.
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Part 1: Evaluation (15 points)

Exercise 1.

[written] Show the evaluation of each of the following OCaml expressions. Use the envi-
ronment model (with the rule of lexical scoping), and justify your answer by showing the
evaluation of all subexpressions.

(a) let y = 10 in let x = 3 in x+y

(b) let f x a = x::a in f 42 [3110]

For part (b), you will need to do some desugaring of the OCaml expression before attempting
to evaluate it.

Here is an example of the kind of answer we’re expecting:

{} :: let x = 3+5 in x+x || 16

{} :: 3+5 || 8

{} :: 3 || 3

{} :: 5 || 5

3+5 = 8

{x=8} :: x+x || 16

{x=8} :: x || 8

{x=8} :: x || 8

8+8 = 16

Exercise 2.

[written] Consider the following program:

let x = 1 in

let f = fun y ->

(let x = y + 1 in

fun z -> x + y + z) in

let x = 3 in

let g = f 4 in

let y = 5 in

let z = g 6 in

z

(a) To what value does this program evaluate under the rule of lexical scope?

(b) To what value does this program evaluate under the rule of dynamic scope?

(c) Using the environment model, explain the key place(s) where evaluation of the above
program becomes different under the two scoping rules.
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Function Specification and Testing

Complete each of the coding exercises below by following these instructions:

1. Write a function with the appropriate name and type.

2. Write a specification comment above the definition of the function that documents a
concise and accurate description of the function’s precondition and postcondition. Also
document a brief description of the function (one or two sentences) and/or a brief
description of each argument (a couple of words), if your pre- and postconditions do
not already address those descriptions.

3. Write unit tests that demonstrate the function’s correctness. If the function is named
f, then these tests should be named f_test1, f_test2, . . . f_testn. How many unit
tests should you write? As many as necessary to make you confident that your solution
is correct. Your tests should be in a separate file named ps2 test.ml.

Some Advice on Style

• Write helper functions as needed.

• Use List.hd and List.tl only if you must, and only in situations where it is guaran-
teed they cannot raise exceptions.

• Consider efficiency, particularly when choosing between fold_left and fold_right,
and when deciding whether to use the append operator @.

Part 2: rec vs. fold vs. List (30 points)

[code] Write each of the following functions in each of three ways:

(i) as a recursive function, without using the List module (append _rec to the function
name for this implementation),

(ii) using List.fold_left or fold_right, but not other List module functions or the
rec keyword (append _fold to the function name for this implementation), and

(iii) using any combination of List module functions other than fold_left or fold_right,
but not the rec keyword (append _lib to the function name for this implementation).

You will therefore implement nine functions in this part of the problem set.
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Exercise 3.

Write a function lst_and: bool list -> bool, such that lst_and [a1; ...; an] returns
whether all elements of the list are true. That is, it returns a1 && a2 && ... && an. The
lst_and of an empty list is true. For example:

• lst_and [true; true] = true

• lst_and [true; false] = false

• lst_and [] = true

Exercise 4.

Write a function exists: (’a -> bool) -> ’a list -> bool, such that
exists p [a1; ...; an] returns whether at least one element of the list satisfies the predi-
cate p. That is, it returns (p a1) || (p a2) || ... || (p an). The exists of an empty
list is false. For example:

• exists (fun i -> i > 0) [2; 3] = true

• exists ( (<) 0 ) [(-1); 2] = true

• exists ( (=) 0) [(-1); 2] = false

• exists (fun p -> true) [] = false

Exercise 5.

Write a function first: (’a -> bool) -> ’a list -> int, such that first p l returns
the index of the first element of list l that satisfies predicate p. The head of a list is at index
0. Raise Not_found if there is no element that satisfies the predicate. For example:

• first (fun f -> (f 3100) = 3110) [(+) 3; (+) 1; (+) 10] = 2

• first (fun f -> (f 3100) = 3410) [(+) 3; (+) 1; (+) 10] raises Not_found

Part 3: Folding (20 points)

[code] Complete these exercises using List.fold_left or List.fold_right, and without
using the rec keyword or any other List module functions. The most elegant solutions will
need only one line of code.
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Exercise 6.

Write a function alt_sum of type int list -> int that computes the alternating sum of
the list, such that alt_sum [a1; ...; an] = a1 - a2 + a3 - a4 +. . .

• alt_sum [3105;(-3);2] = 3110

• alt_sum [7] = 7

• alt_sum [] = 0

Exercise 7.

Write a function poly that takes a list of floats [a0, a1, . . . , an−1] and produces a function
that takes an argument x and evaluates the polynomial

a0 + a1x + a2x
2 + . . . + an−1x

n−1.

If the list of floats is empty, the function produced should always return 0. For example:

# let p1 = poly [1.;1.;1.];;

val p1 : float -> float = <fun >

# p1 1.0;;

- : float = 3.

# p1 2.0;;

- : float = 7.

# let p2 = poly [];;

val p2 : float -> float = <fun >

# p2 4.0;;

- : float = 0.

Part 4: Matrices (50 points)

[code] A matrix can be thought of as a 2-dimensional array. OCaml has an Array module,
but we won’t use that in this problem. Instead, let’s define a representation for matrices of
integers as follows:

type vector = int list

type matrix = vector list

For example, the matrix

m =

[
1 2 3
42 41 40

]
would be represented in row major form as follows:
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let m = [[1;2;3];[42;41;40]]

Each list in this matrix represents a row in m.

A valid matrix is one in which all rows have the same length—i.e., the matrix is rectangular—
and that length must be at least 1. Examples of invalid matrices include [], [[];[]], and
[[1];[2;3]]. The behavior of your functions on invalid matrices is unspecified, meaning
that we leave it up to you how to handle such inputs—and we will not be testing your
functions on them. Your functions might raise an exception, or perhaps they might require
validity as a precondition. Whatever you choose, be clear in your specification comment
about what your function does.

You may choose any implementation strategy—rec, fold, or List—for these exercises.
But choose wisely, because some choices are likely to be much easier than others to imple-
ment. Many of these exercises can be solved with just one line of code.

Exercise 8.

Implement a function show: matrix -> unit that prints the elements of the input matrix.
For example,

# show m;;

1 2 3

42 41 40

- : unit = ()

We will not grade this exercise, but we strongly suggest that you complete it, because it is
likely to be helpful in debugging later exercises.

Exercise 9.

Write a function is_square: matrix -> bool that returns whether the input matrix is
square. A matrix is square if the number of rows is equal to the number of columns.

Exercise 10.

Implement a function insert_col: matrix -> vector -> matrix which takes a matrix m

and a vector c and inserts c as the right-most column of m. If the sizes of the matrix and
the vector do not match, the behavior is unspecified. For example, if m is the matrix defined
above, then

• insert_col m [6;7] = [[1;2;3;6];[42;41;40;7]]

• insert_col m [42;42;42] is unspecified
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Exercise 11.

Using insert_col, write a function transpose: matrix -> matrix that returns the trans-
pose of a matrix. For example, if m is the matrix defined above, then

• transpose m = [[1;42];[2;41];[3;40]]

Exercise 12.

Implement a function add_matrices: matrix -> matrix -> matrix for entry-wise matrix
addition. If the two input matrices are not the same size, the behavior is unspecified. For
example,

• if m1 = [[1;2;3];[4;5;6]] and m2 = [[42;42;42];[43;43;43]], then
add_matrices m1 m2 = [[43;44;45];[47;48;49]]

Exercise 13.

Write a function trace: matrix -> int that returns the trace of a square matrix. The trace
of a square matrix is the sum of the entries on the diagonal. The behavior is unspecified on
non-square matrices. For example,

• trace [[1;2;3];[2;3;4];[3;31;38]] = 42

• trace [[5;4];[21;22];[10;11]] is unspecified

Exercise 14.

Write a function inner: vector -> vector -> int that returns the inner product of two
vectors. The behavior is unspecified when given two vectors of different length. For example,

• inner [1;2;3;4] [2;4;1000;25] = 3110

• inner [5;4] [21;22;10;11] is unspecified

Exercise 15.

Implement a function multiply_matrices: matrix -> matrix -> matrix that returns
the matrix product of the two input matrices. If the two input matrices are not of sizes
that can be multiplied together, the behavior is unspecified. For example,

• if m1 = [[1;2;3];[4;5;6]] and m2 = [[7;8];[9;10];[11;12]], then
multiply_matrices m1 m2 = [[58;64];[139;154]]
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Exercise 16.

Write a function outer: vector -> vector -> matrix that returns the outer product of
two vectors. The behavior is unspecified when given two vectors of different length. For
example,

• outer [1;2;3] [4;5;6] = [[4; 5; 6]; [8; 10; 12]; [12; 15; 18]]

• outer [5;4] [21;22;10;11] is unspecified

Part 5: Expression Trees (35 points)

[code] This problem explores the use of a tree data structure to represent computations.
Consider the following type:

type ’a exprTree =

| Val of ’a

| Unop of (’a -> ’a) * ’a exprTree

| Binop of (’a -> ’a -> ’a) * ’a exprTree * ’a exprTree

Each node in an exprTree can be thought of as either a value or the application of a function
to the node’s children. You could represent 3 + (-(5/2)) as the following exprTree:

Binop ((+), Val 3, Unop ((~-), Binop ((/), Val 5, Val 2)))

But that expression is a little difficult to read. To improve readability, we could use whites-
pace:

Binop ((+),

Val 3,

Unop ((~-),

Binop ((/),

Val 5,

Val 2)))

+

3 ~-

/

5 2

Exercise 17.

Implement a function count_vals: ’a exprTree -> int that returns the number of values
(i.e., the number of Val nodes) in the input tree. For example,

# count_vals (Binop ((+), Val 2, Val 3));;

- : int = 2

# let t =

Binop ((+),
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Val 3,

Unop ((~-),

Binop ((/),

Val 5,

Val 2)))

val t : int exprTree =

Binop (<fun >, Val 3, Unop (<fun >, Binop (<fun >, Val 5, Val 2)))

# count_vals t;;

- : int = 3

Exercise 18.

Write a function eval: ’a exprTree -> ’a that evaluates the expression described by the
tree. Your function should behave just as the REPL would behave when asked to evaluate
the equivalent OCaml expression. For example,

• eval (Unop ((~-), Val 5)) = -5

• eval (make_asum_tree 6) = 21

• eval (Binop((/), Val 1, Val 0)) should raise Division_by_zero.

Exercise 19.

Consider the following function:

(* returns: the sum of the integers 1..n

* requires: n >= 1 *)

let rec asum n =

if n=1 then 1 else n + (asum (n-1))

This function generates the sum n + (... + (4 + (3 + (2 + 1)))). Write a function
make_asum_tree: int -> int exprTree, which generates a tree representing that sum.
For example, make_asum_tree 4 would return the following tree:

Binop ((+),

Val 4,

Binop ((+), Val 3,

Binop ((+), Val 2, Val 1)))

(As usual, the REPL will print <fun> instead of (+) in that tree.) If n is not a positive
integer, then make_asum_tree n should raise Failure "make_asum_tree error".

Hint 1: For testing purposes, it might help to recall (from CS 2800) that

n∑
k=1

k =
n(n + 1)

2
.
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Hint 2: When writing unit tests, you will find that you cannot compare or pattern match
on functions. (Determining equality of functions is, in general, undecidable—see CS 4810.)
So you will need to write the best unit tests you can, given this limitation.

Exercise 20.

It is possible to define generalized fold operations (aka. catamorphisms—see CS 6117) over
any datatype—not just lists. In this exercise, we’ll explore folding over exprTree.

The basic idea of a generalized fold operator is that it traverses a data structure, consuming
the elements of that structure, and producing an accumulator. The fold operator (we’ll
henceforth omit the word “generalized” for brevity) needs to know, for each variant of the
datatype, how to incorporate the data carried by that variant into the accumulator.

For example, consider this simplified list datatype:

type intlist = Cons of int * intlist | Nil

Let’s assume the accumulator is of type ’a. The fold operator needs to know how to produce
an accumulator value out of the data carried by the Cons variant—that is, the int and the
intlist. The easy part of that is the intlist, because the fold operator can recursively
call itself on that intlist, producing an accumulator value. The hard part is taking that
accumulator, incorporating the int into it, and producing a new accumulator. There’s no
single way to do that; it depends on what kind of computation the client wants to do. For
example, the client might want to sum the list elements, multiply them, etc. So instead, the
client of the fold operator needs to provide a function foldCons that does the incorporation,
where foldCons: int -> ’a -> ’a. When the fold operator reaches a Cons(i,l), it will
recurse on l, producing an accumulator a, then call foldCons i a to incorporate i and
produce a new accumulator.

The fold operator also needs to know to produce an accumulator value out of the data
carried by the Nil variant. Actually, there is no data carried by that variant, so the client
of the fold operator needs to provide a value foldNil: ’a that the fold operator can use to
produce an accumulator value anytime it finds a Nil.

Given foldCons and foldNil, we could write a fold operator as follows:

let rec intlist_fold (foldCons : int -> ’a -> ’a)

(foldNil : ’a) : intlist -> ’a = function

| Cons(i,l) -> foldCons i (intlist_fold foldCons foldNil l)

| Nil -> foldNil

It turns out we’ve reinvented fold_right! In fact, intlist_fold is the same algorithm as
List.fold_right, but the implementation has the order of the final two arguments swapped:

let rec fold_right (f : ’a -> ’b -> ’b)

(l : ’a list) (acc : ’b) : ’b =

match l with

[] -> acc

| x :: xs -> f x (List.fold_right f xs acc)
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The argument that fold_right names f serves the same purpose as foldCons; likewise, for
acc and foldNil.

The technique we used to derive intlist_fold above works for any OCaml datatype:

• Write a recursive fold function that takes in one argument for each variant of the
datatype.

• That fold function matches against the datatype variants, calling itself recursively on
any instance of the datatype that it encounters.

• When a variant carries data of a type other than the datatype being folded, use the
appropriate argument to fold to incorporate that data.

• When a variant carries no data, use the appropriate argument to fold to produce an
accumulator.

Use this technique to write a generalized fold operator for exprTree with the following type:

exprTree_fold : (’a -> ’b) ->

((’a -> ’a) -> ’b -> ’b) ->

((’a -> ’a -> ’a) -> ’b -> ’b -> ’b) ->

’a exprTree ->

’b

Exercise 21.

Reimplement count_vals and eval with exprTree_fold. Name your new functions
count_vals_fold and eval_fold.

Part 6: Comments (0 points)

[written,ungraded] In ps2written.pdf, please include any comments you have about the
problem set or about your solutions. This would be a good place to list any known problems
with your submission that you weren’t able to fix, or to give us general feedback about how
to improve the problem set.
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