CS 3110 Spring 2015
Problem Set 0
Version 1 (last modified January 22, 2015)

You do not need to submit anything for this assignment. In that sense, it is optional. But
we strongly encourage you to complete it now.

Objectives: This assignment will help you install an OCaml development environment.
You will become familiar with tools used in the course: a virtual machine, the Linux shell,
and the ¢s3110 tool.

Getting help: When you need help, there are many resources available to you. The CS
3110 Piazza site is a great place to ask questions. Course staff and other students are very
active and will typically respond within a couple hours. Consulting hours are a great place
to ask about anything in this assignment and future assignments, as well as other questions
you may have about OCaml or setting up your environment.

Exercise 1.

We have pre-loaded a Linux virtual machine image with all of the software you will need
in this course as well as a variety of popular text editors and development environments.
Download, install, and launch the virtual machine:

(a) Download and install Virtual Box for your operating system:
https://www.virtualbox.org/wiki/Downloads
(b) Download the 3110 virtual machine image:
https://cornell.box.com/3110vm
It’s a big file and will take some time to download.

(c¢) Import the virtual machine:

e Run VirtualBox.
e Select File — Import Appliance.

e Select “Open Appliance”, and choose the .ova file you just downloaded. Then click
continue and then click “import”. This step might take some time.

(d) Run the virtual machine:

e Select ¢s3110-VM from the list.
e Click “Start”.

(e) Use the controls found in the lower left-hand corner of the screen to perform these tasks:

e Launch a web browser.

e Open a terminal window.


https://www.virtualbox.org/wiki/Downloads
https://cornell.box.com/3110vm

Exercise 2.

You can interact with the OCaml interpreter in a terminal window using a top-level or REPL
(read-eval-print loop) called utop. It repeatedly reads OCaml expressions, evaluates them,
and prints the resulting value (and the type of that value).

Start utop (by opening a terminal window, typing “utop”, and pressing return) and enter
each of the following expressions. You must end each expression with a double semi-colon
; ; followed by the return key to tell utop that you are finished with entry. Determine the
type and value of each expression as evaluated by utop.

(a) 7 x (1 + 2+ 3)
(b) "cs "~ string_of_int (310 * 10 + 10)
(c) let £ x = x ~ "doz" in f "zar"

To exit utop, enter C-d, that is, Control-d.

Navigate to the directory containing the file hello.ml from the release code, start utop
again, and execute the following command:

#use "hello.ml";;

This causes utop to interprets all the OCaml code inside hello.ml. You should see the
following output:

OCaml is awesome!- : unit = ()

Exercise 3.

Many tasks can be most efficiently performed in a terminal window using an interface known
as the shell or command line. With the shell, the user types in commands, such as

echo "Hello World"

and the shell issues those commands to the operating system, which executes them. There
are many shell tutorials available on the web, such as:

http://linuxcommand.org/learning_the_shell.php
The lecture notes from CS 2043 Unix Tools and Scripting contain a wealth of information:

http://www.cs.cornell.edu/courses/cs2043/2014sp/

Complete the following tasks using the shell on the virtual machine:

(a) In your home directory, create a directory called ¢s3110 (hint: mkdir).

(b) Now within the cs3110 directory, create a directory called psO (hint: cd).



http://linuxcommand.org/learning_the_shell.php
http://www.cs.cornell.edu/courses/cs2043/2014sp/

()

Use echo to create a file ¢s3110/ps0/hw.txt containing the string “hello world” (hint:
I/O redirection).

Remove the hw.txt file (hint: rm).

Using history and grep, create a file mkdirs.txt in the psO directory that contains
all of the mkdir commands you have executed so far. Use cat to see the contents of
mkdirs.txt.

Use touch to create a file output.nosubmit in the psO directory.

Use zip to create a file ps0.zip in the cs3110 directory. The zip should include all the
contents of the psO directory except output.nosubmit. Check the directory structure
and contents of psO.zip using zipinfo. The zip should contain exactly two files: a
directory named psO and a regular file named psO/mkdirs.txt.

Exercise 4.

The course staff has written a tool called c¢s3110 that simplifies the task of compiling,
running, and testing OCaml programs. You will use this program for all problem sets in this
course. The staff will also use a variant of it for grading.

(a)

The ¢s3110 tool provides many commands, including the following:

cs3110 compile <file> Compiles into a bytecode executable-
—~. Relies on ocamlbuild.

cs3110 run <file> Runs a compiled executable.

cs3110 test <file> Checks unit tests in a compiled -
—~executable.

cs3110 clean Removes all of the files gemnerated -
—~during compilation.

cs3110 inspiration Gives a healthy dose of inspiration-
- to the weary CS 3110 champion

cs3110 help Explain a given subcommand

Type cs3110 inspiration and verify that you feel inspired.

Navigate to the grep3110/ directory in the release code. It contains an OCaml imple-
mentation of a simple search command similar to the built-in grep utility. The code
for this program is divided between source files file_utils.ml, regex_utils.ml, and
grep3110.ml, and unit test files file_utils_test.ml and regex_utils_test.ml. To
start, compile the main program:
cs3110 compile -1 str grep3110.ml

Verify that you have a new directory _build and a binary executable grep3110.d.byte
in that directory.

We use the -1 str flag because grep3110.m1 has a dependency on the OCaml Str li-
brary, whose documentation you can view here:




http://caml.inria.fr/pub/docs/manual-ocaml/libref/Str.html
Please note that in future problem sets you are not allowed to use libraries that must
be linked in (like Str) unless they are specifically mentioned as being permitted.

The directory sample_files/ contains a couple small text files. Use grep3110 to search
for any lines containing the string “fox” in test2.txt:

cs3110 run grep3110 "fox" ../sample_files/test2.txt

Verify that the output produced by running this command is the following:

Line 4: fox

Let’s run some unit tests. First, compile the unit tests:

cs3110 compile file_utils_test.ml
cs3110 compile -1 str regex_utils_test.ml

then run them:

cs3110 test file_utils_test
cs3110 test regex_utils_test

You should see no output when you run the cs3110 test commands, meaning that the
unit tests pass.

Let’s add a new unit test. To make it interesting, we’ll write a test that fails. Add the
following lines (how? see the next exercise) at the end of regex_utils_test.ml:

TEST_UNIT "bogus" =
let p = regex_of_string "Haskell" in
let s = "0Caml" in
assert_true (matches p s)

This unit test checks whether the string "Haskell" occurs in the string "0Caml", which
is obviously false. Recompile and test:

cs3110 compile -1 str regex_utils_test.ml
cs3110 test regex_utils_test

File "regex_utils_test.ml", line 56, characters 0-113: -
—~bogus
threw Assertions.Assert_true("false is not true").
Called from file "lib/runtime.ml", line 227, characters -
~71-75
Called from file "lib/runtime.ml", line 189, characters -
-39-45

This time, cs3110 test produces output indicating that a unit test failed.



http://caml.inria.fr/pub/docs/manual-ocaml/libref/Str.html

Exercise 5.

Begin to familiarize yourself with at least one of the following text editors on the virtual
machine. All can be launched from the shell.

Emacs (emacs) Emacs supports extensive integration with a large number of languages
and environments. Emacs is powerful and extensible, and has excellent extensions for
OCaml, but it has a steep learning curve. There is a custom 3110 tutorial for Emacs:

http://www.cs.cornell.edu/courses/cs3110/2015sp/courseware/emacs_guide.pdf

Vim (vim or gvim) Vim is designed for very rapid text navigation and editing. Vim is also
powerful but has a steep learning curve. It has an accompanying tutorial that can be
launched with the vimtutor command.

Sublime (subl) A simple text editor with a gentle learning curve.


http://www.cs.cornell.edu/courses/cs3110/2015sp/courseware/emacs_guide.pdf

