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Hash functions 

Hash tables are one of the most useful data structures ever invented. 

Unfortunately, they are also one of the most misused. Today we will talk 

about hash functions. NOTE: you do not need to build your own hash 

function for PS5! 

 

Code built using hash tables often falls far short of achievable 

performance. There are two reasons for this: 

 Clients choose poor hash functions that do not act like random 
number generators, invalidating the simple uniform hashing 
assumption. 

 Hash table abstractions do not adequately specify what is 
required of the hash function, or make it difficult to provide a good 
hash function. 
 

Clearly, a bad hash function can destroy our attempts at a constant 

running time. A lot of obvious hash function choices are bad. For 

example, if we're mapping names to phone numbers, then hashing each 

name to its length would be a very poor function, as would a hash function 

that used only the first name, or only the last name.  

We want our hash function to use all of the information in the key. This 

is a bit of an art. While hash tables are extremely effective when used 

well, all too often poor hash functions are used that sabotage 

performance. And recall that sometimes one does not know when writing 

a program what the input will be (hence, rapid prototyping!) 
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Perfect hashing and minimal perfect hashing 

Sometimes you know there is a limited set of inputs. This allows you to 

do something amazing! Example: OCaml compiler. 

 

How do you find a perfect hashing function, let alone a minimal one, for 

a given input set? If the hash table is big enough you can just search (or 

even just guess!) 

There are lower bounds on a general algorithm. The bounds are 

actually on the SIZE of the hash function (think about this!) 

Another interesting variant: preserving ordering in the hash function. 
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Back to regular hashing  

Recall that hash tables work well when the hash function satisfies the 

simple uniform hashing assumption -- that the hash function should look 

random. If it is to look random, this means that any change to a key, even 

a small one, should change the bucket index in an apparently random 

way.  

If we imagine writing the bucket index as a binary number, a small 

change to the key should randomly flip the bits in the bucket index. This is 

called information diffusion. For example, a one-bit change to the key 

should cause every bit in the index to flip with 1/2 probability. 
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Client vs. implementer 

As we've described it, the hash function is a single function that maps 

from the key type to a bucket index. 

 In practice, the hash function is the composition of two functions, one 

provided by the client and one by the implementer. This is because the 

implementer doesn't understand the element type, the client doesn't know 

how many buckets there are, and the implementer probably doesn't trust 

the client to achieve diffusion. 

The client function hclient first converts the key into an integer hash code, 

and the implementation function himpl converts the hash code into a bucket 

index. The actual hash function is the composition of these two functions, 

hclient∘himpl: 

 

To see what goes wrong, suppose our hash code function on objects is 

the memory address of the objects, as in Java. This is the usual choice. 

And suppose that our implementation hash function is like the one in 

SML/NJ; it takes the hash code modulo the number of buckets, where the 

number of buckets is always a power of two. This is also the usual 

implementation-side choice. But memory addresses are typically equal to 

zero modulo 16, so at most 1/16 of the buckets will be used, and the 

performance of the hash table will be 16 times slower than one might 

expect. 
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Measuring clustering 

When the distribution of keys into buckets is not random, we say that 

the hash table exhibits clustering. It's a good idea to test your function to 

make sure it does not exhibit clustering with the data. With any hash 

function, it is possible to generate data that cause it to behave poorly, but 

a good hash function will make this unlikely.  

There are many ways to compute clustering, somewhat related to 

entropy (spread). Note that we want to know what it does on the real data! 

Unfortunately most hash table implementations do not give the client a 

way to measure clustering. This means the client can't directly tell whether 

the hash function is performing well or not. Hash table designers should 

provide some clustering estimation as part of the interface, but most don’t. 

This is one reason why people often implement their own hash tables, 

especially in performance-critical applications. 

 

Designing a hash function 

For a hash table to work well for all applications, we want the hash 

function to have two properties: 

 Injection: for two keys k1 ≠ k2, the hash function should give 
different results h(k1) ≠ h(k2), with high probability.  

 Diffusion (stronger than injection, needed for some 
applications): if k1 ≠ k2, knowing h(k1) gives no information about 
h(k2). For example, if k2 is exactly the same as k1, except for one bit, 
then every bit in h(k2) should change with 1/2 probability compared 
to h(k1). Knowing the bits of h(k1) does not give any information 
about the bits of h(k2). 

As a hash table designer, you need to figure out which of the client hash 

function and the implementation hash function is going to provide 

diffusion. For example, Java hash tables provide (somewhat weak) 

information diffusion, allowing the client hashcode computation to just aim 

for the injection property. In SML/NJ hash tables, the implementation 

provide only the injection property. Regardless, the hash table 

specification should say whether the client is expected to provide a hash 

code with good diffusion (unfortunately, few do). 
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If clients are sufficiently savvy, it makes sense to push the diffusion onto 

them, leaving the hash table implementation as simple and fast as 

possible. The easy way to accomplish this is to break the computation of 

the bucket index into three steps. 

1. Serialization: Transform the key into a stream of bytes that 
contains all of the information in the original key. Two equal keys 
must result in the same byte stream. Two byte streams should be 
equal only if the keys are actually equal. How to do this depends on 
the form of the key. If the key is a string, then the stream of bytes 
would simply be the characters of the string. 

2. Diffusion: Map the stream of bytes into a large integer x in a 
way that causes every change in the stream to affect the bits 
of x apparently randomly. There are a number of good off-the-shelf 
ways to accomplish this, with a tradeoff in performance versus 
randomness (and security). 

3. Compute the hash bucket index as x mod m. This is particularly 
cheap if m is a power of two, but see the caveats below. 

Therefore the client-side hash function hclient(k) is defined as (hdiff ∘ hserial)(k) 

mod m, wherehdiff implements diffusion. 

There are several different good ways to implement diffusion (step 2): 

multiplicative hashing, modular hashing, cyclic redundancy checks, and 

secure hash functions such as MD5 and SHA-1. They offer a tradeoff 

between collision resistance and performance. 

Usually, hash tables are designed in a way that doesn't let the client 

fully control the hash function. Instead, the client is expected to implement 

steps 1 and 2 to produce an integer hash code, as in Java. The 

implementation side then uses the hash code and the value of m (usually 

not exposed to the client, unfortunately) to compute the bucket index. 

Some hash table implementations expect the hash code to look 

completely random, because they directly use the low-order bits of the 

hash code as a bucket index, throwing away the information in the high-

order bits. Other hash table implementations take a hash code and put it 

through an additional step of applying an integer hash function that 

provides additional diffusion. With these implementations, the client 

doesn't have to be as careful to produce a good hash code, 

Any hash table interface should specify whether the hash function is 

expected to look random. If the client can't tell from the interface whether 
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this is the case, the safest thing is to compute a high-quality hash code by 

hashing into the space of all integers. This may duplicate work done on 

the implementation side, but it's better than having a lot of collisions. 

Modular hashing 

With modular hashing, the hash function is simply h(k) = k mod m for 

some m (usually, the number of buckets). The value k is an integer hash 

code generated from the key. If m is a power of two (i.e., m=2
p), 

then h(k) is just the p lowest-order bits of k. The SML/NJ implementation 

of hash tables does modular hashing with m equal to a power of two. This 

is very fast but the the client needs to design the hash function carefully. 

Multiplicative hashing 

A faster but often misused alternative is multiplicative hashing, in 

which the hash index is computed as ⌊m * frac(ka)⌋. Here k is again an 

integer hash code, a is a real number and frac is the function that returns 

the fractional part of a real number. Multiplicative hashing sets the hash 

index from the fractional part of multiplying k by a large real number. It's 

faster if this computation is done using fixed point rather than floating 

point, which is accomplished by computing (ka/2
q
) mod m for appropriately 

chosen integer values of a, m, and q. So q determines the number of bits 

of precision in the fractional part of a. 
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Cryptographic hash functions 

Sometimes software systems are used by adversaries who might try to 

pick keys that collide in the hash function, thereby making the system 

have poor performance. Cryptographic hash functions are hash 

functions that try to make it computationally infeasible to invert them: if 

you know h(x), there is no way to compute x that is asymptotically faster 

than just trying all possible values and see which one hashes to the right 

result. Usually these functions also try to make it hard to find different 

values of x that cause collisions; they are collision-resistant. Examples 

of cryptographic hash functions are MD5 and SHA-1. MD5 is not as 

strong as once thought, but it is roughly four times faster than SHA-1 and 

usually still fine for generating hash table indices.  


