Data Structures and Functional Programming Problem Set 5b
CS 3110, Spring 2014 Due Thursday, April 17
Version: 2 Last Modified: April 10, 2014
Overview

Many modern computational problems require processing very large data sets. Google’s
MapReduce framework is a platform for distributing programs that handle big data across
a large number of computers.

In this problem set, you will implement a simplified version of the MapReduce framework.
You will also implement various applications that make use of your framework to process
large data sets.

Objectives

This assignment is designed to help you learn the following skills:

e Writing asynchronous programs in an event-driven style
e Developing distributed systems
e Working with the MapReduce paradigm

e Developing software with a partner

This assignment also has a small component on writing formal proofs.

Recommended Reading

e We have provided documentation for a subset of the Async library that should be
sufficient for this assignment.

Important: Async contains a very large number of libraries
and functions. While you are free to use anything from the full
Async library, sticking to the subset we have documented will
make the project simpler.

e Real World OCaml, chapter 18
e Lectures 17 and 18, recitation 17.

e Pro Git, chapters 1 and 2

http://www.cs.cornell.edu/Courses/cs3110/2014sp/hw/5/doc/index.html
https://realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
http://www.cs.cornell.edu/courses/cs3110/2014sp/lectures/17/concurrency.html
http://www.cs.cornell.edu/courses/cs3110/2014sp/lecture_notes.html
http://www.cs.cornell.edu/courses/cs3110/2014sp/lecture_notes.html
http://git-scm.com/book/en/Getting-Started

Part One: Software engineering

This problem set is larger than previous problem sets. To help you manage the complexity,
you will be required to work with a partner, make use of version control software, and meet
with a TA to discuss your approach.

Partners

You are required to work with a partner for this problem set. You and your partner should
meet early to jointly discuss your design and division of responsibility.

Each partner is responsible for understanding all parts of the assignment, but your choice
of who writes what code is up to you.

Source control

You must use a version control system to manage your development. We recommend git,
but you are free to use another system if you prefer. Both github and bitbucket provide free
private git repositories for educational purposes.

You should submit your source control logs. We will be looking for small self-contained
commits with clear commit messages. You can generate a git log using the command

git log --stat > log.txt

Problem set check-in

You are required to attend a short meeting with your partner and a TA. You should come
to the meeting prepared to discuss your approach to the assignment, the division of labor
between yourself and your partner, and any questions you may have.

Meetings will be held during normal consulting hours during the week of the 7th. You
should sign up for a slot on CMS.

http://github.com/
http://bitbucket.com/

Part Two: Async warmup

These exercises are intended to get you used to asynchronous computation and the Async
programming environment.
Exercise 1:

Write a function fork that takes a deferred and two blocking functions, and runs the two
functions concurrently when the deferred becomes determined:

val fork : ’a Deferred.t -> (’a -> ’b Deferred.t)
-> (’a -> ’c Deferred.t) -> unit

The output of the two blocking functions should be ignored.

Exercise 2:

Using only (>>=), return, and the ordinary List module functions, implement a function
with the following specification:

val deferred_map : ’a list -> (’a -> ’b Deferred.t) -> ’b list Deferred.t

This function should take a list 1 and a blocking function £, and should apply £ concurrently
to each element of 1. When all of the calls to £ are complete, deferred_map should return a
list containing all of their values.

Update (version 2): In fact, this is not the same as the speci-
fication for Deferred.List.map (in fact the Jane Street documentation
does not give a specification for Deferred.List.map).

Deferred.List.map [1;2] £ will not begin running £ 2 until the De-
ferred returned by £ 1 is determined (informally, until £ 1 completes).
If you want use the function specified above for your implementation,
either use your implementation of deferred_map or supply the optional
argument ~how: ‘Parallel to Deferred.List.map:

Deferred.List.map “how: ‘Parallel [1;2] £

Exercise 3:

Implement the asynchronous queue interface defined in aQueue.m1i. You may find the Async.Std.Pipe
module useful for this exercise.

Part Three: MapReduce Framework

Modern applications rely on the ability to manipulate massive data sets in an efficient man-
ner. One technique for handling large data sets is to distribute storage and computation
across many computers. Google’s MapReduce is a computational framework that applies
functional programming techniques to parallelize applications.

MapReduce Overview

MapReduce was spawned from the observation that a wide variety of applications can be
structured into a map phase, which transforms independent data points, and a reduce
phase which combines the transformed data in a meaningful way. This is a very natural
generalization of folding.

MapReduce jobs provide the code to run in these two phases by implementing the MapReduce. Job
interface. A MapReduce Job is executed as follows:

e The map function takes a single input and transforms the value into a collection of
intermediate key, value pairs. The map function is called once for each element of the
input list.

val map : input -> (key * inter) list Deferred.t

e The map results are then combined — values associated with the same key are merged
into a single list.

e Finally, the reduce function takes a key and an inter list to compute the output
corresponding to that key. reduce is called once for each independent key.

val reduce : key * inter list -> output Deferred.t

The advantage of this design is that each call to map or reduce is independent, so the work
can be distributed across a large number of machines. This allows MapReduce applications to
process very large data sets quickly while using limited resources on each individual machine.

An example: Word Count

Figure 1 shows a distributed execution of a word counting application. The input to the
application is a list of filenames. During the map phase, the controller sends a MapRequest
message for each input filename to a mapper. The mapper invokes the map function in
the WordCount.Job module, which reads in the corresponding file and produces a list of
(word, count) pairs. The mapper then sends these pairs back to the controller.

Once the controller has collected all of the intermediate (word,count) pairs, it groups all
of the pairs having the same word into a single list, and sends a ReduceRequest to a reducer.
The reducer invokes the reduce function of the wordCount.Job module, which simply returns
the sum of all of the counts. The reducer sends this output back to the controller, which
collects all of the reduced outputs and returns them to the wordCount application.

4

RemoteController (WordCount.Job) .map_reduce

["mushroom soup"; "badger badger ---"; ---1;;
Controller
MapRequest MapRequest

"mushroom soup"

MapResult [
("mushroom" ,1);
("SOUP",l)

ReduceRequest
("badger" ,[12])

ReduceResult 12

Controller

"badger badger

MapResult [

("badger", 12);
("mushroom", 2);
("snake!", 3);

ReduceRequest
("mushroom", [1;2])

ReduceResult 3

return [("mushroom",3);
(”soup",l);

("badger" ,12);
("snake!" ,7);

Figure 1: Execution of a WordCount MapReduce job

oseyd dew

oseyd sonpal

Communication protocol

In our implementation of MapReduce, the Controller communicates with Workers by sending
and receiving the messsages defined in the Protocol module.

Messages are strongly typed; a message from the Controller to the Worker will have
type WorkerRequest.t; responses have the type WorkerResponse.t. Messages can be sent and
received by using the send and receive functions of the corresponding module. For example,
the Controller should call WorkerRequest.send to send a request to a worker; the worker will
call WorkerRequest.receive to receive it.

The WorkerRequest and WorkerResponse modules are parameterized on the Job, so that the
messages can contain data of the types defined by the Job. This means that before the
worker can call receive, it needs to know which Job it is running. As soon as the controller
establishes a connection to a worker, it should send a single line containing the name of the
job. After the job name is sent, the controller should only send workerRequest.ts and receive

WorkerResponse. tsS.

We have provided code in the Wworker module’s init function that receives the job name
and calls Worker.Make with the corresponding module.

Once a connection is established and the job name is sent, the Controller will send
some number of WorkerRequest .MapRequest and WorkerRequest .ReduceRequest messages to the
worker. The worker will process these messages and send WorkerRequest.MapResult and
WorkerRequest .ReduceResult messages respectively. When the job is complete, the controller
should close the connection.

Update (version 2): We have added the function Async.Std.Socket . shutdown
to our documentation, which you can call to close the connection.

Error handling

There are a variety of errors that you will have to consider.

infrastructure failure If the controller is unable to connect to a worker, or if a connection
is broken while it is in use, or if the worker misbehaves by sending an inappropriate
message, the controller should simply close the connection to the worker and continue
processing the job using the remaining workers.

If all of the workers die, the map_reduce function should raise an InfrastructureFailure
exception.

If a worker encounters an error when communicating with the controller, it should
simply close the connection.

application failure If the application raises an exception while executing the map or reduce
functions, then the worker should return a JobFailed message. Upon receiving this
message, the controller should cause map_reduce to raise a MapFailed Or ReduceFailed
exception.

The name and stack trace of the original exception can be found using the Printexc
module from the OCaml standard library; these should be returned to the controller
in the JobFailed message, and used to construct the MapFailed exception.

Update (version 2): We did not define the InfrastructureFailure,
MapFailed Or ReduceFailed exceptions in the release code. Feel
free to define them yourself or to raise any other exception (for
example by calling failwith.

Exercise 4: Implement RemoteController

Implement the RemoteController module. The init function should simply record the pro-
vided list of addresses for future invocations of Make.run.

The Make.map_reduce function is responsible for executing the MapReduce job. It should
use Tcp.connect to connect to each of the workers that were provided during init. It should
then follow the protocol described above to complete the given Job.

You can use the controller to run a given app by running the controllerMain.ml:

% cs3110 compile controllerMain.ml
% ©s3110 run controllerMain.ml <app_name> <app_args>

Exercise 5: Implement Worker

Implement the Worker.Make module in the map reduce directory. The Make.run function should
receive messages on the provided Reader.t and respond to them on the provided writer.t
according to the protocol described above.

You can run the worker on a given port by invoking workerMain.ml:

% ¢s3110 compile workerMain.ml
% ¢s3110 run workerMain.ml 31100

The list of addresses and ports that the controller will try to connect to is given in the file

addresses.txt.

Exercise 6: [Karma] handle slow workers

It is possible that some workers may simply be slow. As an optional Karma problem, you
may detect whether a worker is taking more than a few seconds to process a job, and add a
second worker to process the same job if it is. If both workers are taking too long, you can
add a third worker, and so on.

The old workers should not be terminated; the first of these workers to respond should
determine the output of the job. You may find Ivars useful for this task.

Part Four: MapReduce Applications

In this part of the assignment you will implement various MapReduce applications.

A MapReduce application implements the MapReduce.App interface, which provides a main
function. This function will typically read some input, and then invoke the provided con-
troller with one or more Jobs. We have provided you with the WwordCount example application
described above to get you started.

We have also provided you with a local controller that you can use to test your apps
without a completed implementation of the MapReduce framework. To run an app locally,
simply pass the -local option to controllerMain.ml. You should be able to run WordCount out
of the box:

% ¢s3110 compile controllerMain.ml
% ¢s3110 run controllerMain.ml -local wc ../writeup/psbb.tex

Exercise 7: Inverted Index

An inverted index is a mapping from words to the documents in which they appear. Complete
the InvertedIndex module (in apps/index) that takes in a master list of files, and computes
an index on those files.

For example, if the files master.txt, zar.txt and doz.txt contained the following:

master.txt zar.txt doz.txt
zar .txt ocaml is fun because fun
doz.txt fun fun fun is a keyword

then running the index app on master.txt should produce the output

[("ocaml", ["zar.txt"]); ("is", ["zar.txt"; "doz.txt"]);
("fun", "zar.txt"; "doz.txt"]); ("because", ["doz.txt"]l);
eyl ["doz.txt"]); ("keyword", ["doz.txt"])]

Exercise 8: Genetic Sequence Alignment

The goal of this exercise is to identify which fragments of a DNA sequence appear within
a longer reference sequence. This is an important problem from the field of computational
biology.

A DNA sequence is a string made from the letters G, C, A and T. The input to your
application will be a single long sequence (called the “reference”) and a collection of short
sequences (called “reads”). Your goal is to identify subsequences of the reads that match
some part of the reference.

For example, if you are given the reference sequence

ref: GATCTCTATGCAAAATACGTATTTGTACGTCCACCCTCGGAGTGGTG

and one of the reads is

read: CGTATTTGTACATCCACCCTCGG

your goal is to discover that they match well when lined up as follows:

match: o o _____
ref : GATCTCTATGCAAAATACGTATTTGTACGTCCACCCTCGGAGTGGTG
read: CGTATTTGTACATCCACCCTCGG

This problem can be solved using two MapReduce jobs as follows.

e In the first map phase, the input reference and reads will be broken into 10 character
sequences (called “10-mers,” or more generally “k-mers”). For example, the read
"AGCTAGCTCAGTACC" would be mapped as follows:

read X: AGCTAGCTCAGTACC
output: AGCTAGCTCA occurs in read X at offset O
GCTAGCTCAG occurs in read X at offset 1
CTAGCTCAGT occurs in read X at offset 2
TAGCTCAGTA occurs in read X at offset 3
AGCTCAGTAC occurs in read X at offset 4
GCTCAGTACC occurs in read X at offset 5

The mapper will output the k-mers as keys, and identifying information (such as the
source sequence and offset) as values.

e The first reduce phase collects all of the occurrences of the given k-mer, and outputs
a list of all possible matches between a sequence and a read.

e The second map phase will take the k-mer matches as input and will output them with
keys given by the identities of the reference and read to which they correspond.

e The final reduce phase will combine adjacent shared k-mers. For example, if the 10-
mers at offsets 5, 6, and 7 of a read r match the reference at offsets 17, 18, and 19,
then we know that the subsequence of r of length 12 starting at offset 5 matches the
reference at offset >1>< 17.

At the end of these two phases, the output will be a list of partial matches between reads
and references.

We have provided you with starter code to load files containing the data. You must
implement the DnaSequencing.App.run function which takes a list of reads and references and
outputs a list of matches between them.

Getting started

To help you get oriented, here is a brief summary of the files in the release:

e The map_reduce folder contains all of the infrastructure code

— The MapReduce module defines the interface between the apps and the infrastruc-
ture.

— RemoteController and Worker are the modules that you have to implement.

— LocalController contains a working non-distributed implementation of the Controller
interface. It makes use of Combiner for the combine phase.

e The apps folder contains the apps and the utilities that they use.

e The async folder contains the stubs for the async warmup exercises in part .

Comments

In addition to the usual comments, we are particularly interested in your feedback about
using Async for this project.

Karma suggestions

There are a lot of fun things you can do with MapReduce. For example:

e There are a very large number of applications that can be implemented in the MapRe-
duce framework. Find one that interests you and code it up!

e Brute force algorithms can work well when you have lots of brutes. You could adapt
your solver from PS3 to run as a MapReduce app.

e You could think about how the software design would change if you wanted to make
the workers themselves concurrent (and write up a summary)

e You could also think about how to extend the design so that the mappers communicate
directly with the reducers to reduce the load on the controller.

10

