
Data Structures and Functional Programming Problem Set 1
CS 3110, Spring 2014 Thursday, February 6
Version: 1 Last Modified: January 31, 2014

Overview

This assignment will take you through a sequence of small problems, culminating in a final
program that simulates a rock-paper-scissors tournament.

Objectives

• Gain familiarity with basic OCaml features such as lists, tuples, functions, pattern
matching, and data types.

• Practice writing programs in the functional style using immutable data, recursion, and
higher-order functions.

• Introduce the basic features of the OCaml type system.

• Illustrate the impact of code style on readability, correctness, and maintainability.

Recommended reading

The following supplementary materials may be helpful in completing this assignment:

• Lectures 1 2 3

• Recitations 1 2 3

• The CS 3110 style guide

• The OCaml tutorial

• Real World OCaml, Chapters 1-3

What to turn in

Exercises marked [code] should be placed in ps1.ml and will be graded automatically. Exer-
cises marked [written] should be placed in written.txt or written.pdf and will be graded by
hand.

1

http://www.cs.cornell.edu/Courses/cs3110/2014sp/lectures/1/lec01.pdf
http://www.cs.cornell.edu/Courses/cs3110/2014sp/lectures/2/lec02.html
http://www.cs.cornell.edu/Courses/cs3110/2014sp/lectures/3/lec03.html
http://www.cs.cornell.edu/Courses/cs3110/2014sp/recitations/1/rec01.html
http://www.cs.cornell.edu/Courses/cs3110/2014sp/recitations/2/tuples_records_data.html
http://www.cs.cornell.edu/Courses/cs3110/2014sp/recitations/3/rec03.html
http://www.cs.cornell.edu/Courses/cs3110/2014sp/handouts/style.html
http://ocaml.org/learn/tutorials/
https://realworldocaml.org/v1/en/html/index.html

Warm-up

Exercise 1:

[written] Identify the types and values of the following expressions. If the expressions are
not well typed, briefly explain why not.

Note: Although the toplevel will give you the answers to these ques-
tions, we recommend that you try them on your own before checking
them against the toplevel. Figuring out types is a good skill to have
for reading OCaml code and for passing 3110 exams.

(a) 3 + 5

(b) ("zardoz", 3+5)

(c) ["zardoz"; 3+5]

(d) [List.hd] :: []

(e) fun x y -> if x then y else x

(f) fun a (b, c) -> a c (b c)

Exercise 2:

[written] Give expressions having the following types.

(a) int -> int -> int

(b) (int -> int) -> int

(c) int -> (int -> int)

(d) ’a -> ’a

(e) ’a -> ’b -> ’a

(f) (’a * ’b -> ’c) -> (’a -> ’b -> ’c)

2

Code Style

Exercise 3:

Rock-paper-scissors is a simple two-player game in which players independently choose one of
three symbols (rock, paper, or scissors), and reveal their choice simultaneously. The winner
of each round is selected using the following ordering: rock beats scissors, scissors beat paper,
and paper beats rock. When the two players choose the same symbol, the round ends in a
draw.

The following function simulates a single round of a rock-paper-scissors game, but is written
with poor style.

(**

* [rps_round a b] accepts two symbols , [a] and [b], and determines the

* winner. "rock" beats "scissors", "scissors" beats "paper", and "paper"

* beats "rock"

*

* @param a b One of the choices "rock", "paper" or "scissors"

* @return One of { -1, 0, 1, 4 }. -1 means [a] won , 1 means [b] won ,

* 0 indicates a tie. 4 indicates an invalid input.

*)

let rps_round (a : string) (b : string) : int =

if a = "rock" then (

if b = "rock" then 0

else if b = "paper" then 1

else if b = "scissors" then -1

else 4

)

else if a = "paper" then (

if b = "rock" then -1

else if b = "paper" then 0

else if b = "scissors" then 1

else 4

)

else if a = "scissors" then (

if b = "rock" then 1

else if b = "paper" then -1

else if b = "scissors" then 0

else 4

)

else 4

3

http://en.wikipedia.org/wiki/Rock-paper-scissors

(a) [code] Modify rps_round using the following type definitions,

type move = Rock | Paper | Scissors

type result = AWin | BWin | Draw

so that a and b have type move, and the function returns a value of type result. The
resulting function rps_round_enum.

[written] Briefly explain (in one or two sentences) why this function is less error-prone
than the version using string and int.

(b) [code] Write a function rps_round_nested_match replacing each if-then-else expression
with a match statement.

[written] Explain in one or two sentences why rps_round_nested_match is less error-prone
than rps_round_enum

(c) [code] Simplify the function further in rps_round_single_match by replacing the entire
body of the function with a single match statement (hint: match on a tuple).

(d) [code] Write a function rps_round_with_helper that uses a helper function

beats : move -> move -> bool

returning true if its first parameter wins against its second parameter and false other-
wise. Use the catch-all pattern _ in your implementation of beats.

[written] Explain one way in which the rps_round_with_helper implementation is less
error-prone than rps_round_single_match. Explain one way in which rps_round_with_helper

is more error-prone than rps_round_single_match (Hint: consider the code changes that
would be needed to add a fourth move Nuke that beats all of the other moves).

OCaml programming

Exercise 4:

(a) [code] Write a function all_pairs that takes an ’a list ` as input and returns a list
containing all pairs of elements of `. For example:

all_pairs [’a’; ’b’];;

- : (char * char) list = [(’a’, ’a’); (’a’, ’b’);

(’b’, ’a’); (’b’, ’b’)]

all_pairs [0; 1; 2];;

- : (int * int) list = [(0, 0); (0, 1); (0, 2); (1, 0);

(1, 1); (1, 2); (2, 0); (2, 1); (2, 2)]

The order of the output list does not matter.

4

(b) [code] Use all_pairs to implement a function test_rps_eq that takes two of your imple-
mentations of rps_round as arguments, and returns true if they agree on all inputs. For
example:

test_rps_eq rps_round_enum rps_round_enum ;;

- : bool = true

test_rps_eq rps_round_enum rps_round_with_helper ;;

- : bool = true

let rps_round_bogus a b = AWin in

test_rps_eq rps_round_enum rps_round_bogus ;;

- : bool = false

let rps_round_bogus a b = AWin in

test_rps_eq rps_round_bogs rps_round_bogus ;;

- : bool = true

(c) [code] Use all_pairs and test_rps_eq to implement a function test_all_rps that takes a
list of rps_round implementations as arguments and returns true if all of them are equal
on all inputs:

test_all_rps [rps_round_enum; rps_round_single_match;

rps_round_nested_match; rps_round_with_helper];;

- : bool = true

let rps_round_bogus a b = AWin in

test_all_rps [rps_round_enum; rps_round_bogus];;

- : bool = false

Exercise 5:

A rock-paper-scissors player can be represented as a function that takes in a list of the
opponent’s previous moves, and returns a move for the next round:

type history = move list

type player = history -> move

For example, the player that always chooses Rock would be represented as

let always_rock : player = fun history -> Rock

By convention, we will store the most recent move at the head of the list. For example, in
the following game,

round 1 2 3 4 5
A’s move Rock Paper Paper Scissors ?
B’s move Rock Paper Paper Scissors

5

the list passed to player A for the fifth round will be [Scissors; Paper; Paper; Rock].

(a) [code] Implement a player beats_last that always beats the most recent move that the
opponent made. beats_last should play Rock on the first move. For example:

beats_last [Rock; Paper; Paper; Scissors];;

- : move = Paper

beats_last [Paper];;

- : move = Scissors

beats_last [];;

- : move = Rock

(b) [code] Write a function always_plays that takes a move and returns a player that always
plays that move. For example:

let always_paper = always_plays Paper ;;

always_paper : player = <fun >

always_paper [];;

- : move = Paper

always_paper [Scissors; Scissors; Scissors];;

- : move = Paper

(c) [code] Write a function rps_game that takes two players and keeps running rounds until
one of them wins. It should return true if the first wins; false otherwise. Use any of your
implementations of rps_round from Exercise 1.

Exercise 6:

(a) [code] Write a function

pair_filter : (’a -> ’a -> ’a) -> ’a list -> ’a list

pair_filter takes two inputs: a function compare that returns one of two values, and a
list l of values. The pair_filter function should break l into adjacent pairs, and apply
compare to each pair. It should return a list containing the resulting values. For example,

pair_filter max [0; 5; 7; 2; 3; -10]

↓ [max 0 5; max 7 2; max 3 -10]

↓ [5; 7; 3]

If the input list has odd length, then the last element should be returned as well. For
example,

pair_filter min [1; 2; 3; 4; 5]

↓ [min 1 2; min 3 4; 5]

↓ [1; 3; 5]

6

(b) [code] Write a function

tournament : (’a -> ’a -> ’a) -> ’a list -> ’a option

tournament should repeatedly call pair_filter on its input list until only a single element
w remains. It should then return Some w. If the input list is empty, tournament should
return None.

For example,

tournament max [1; 4; 3; 2; 7; 9; 0]

↓ tournament max [4; 3; 9; 0]

↓ tournament max [4; 9]

↓ tournament max [9]

↓ Some 9

Comments

[written] At the end of the file, please include any comments you have about the problem
set, or about your implementation. This would be a good place to document any extra
Karma problems that you did (see below), to list any problems with your submission that
you weren’t able to fix, or to give us general feedback about the problem set.

Release files

The accompanying release file ps1.zip contains the following files:

• writeup/ contains this file and also the .tex file we used to generate it (in case you are
interested)

• release/ps1.ml and written.txt are templates for you to fill in and submit.

• ps1.mli contains the interface and documentation for the functions that you will im-
plement in ps1.ml

• examples.ml contains all of the examples from this writeup in the form of unit tests.

7

Karma Suggestions

Note: We encourage you to think about different directions that
you can take the problem sets or different parts of OCaml or functional
programming that you are curious about.

You may submit any extra work you do in the Karma section of each
problem set. We will comment on any extra work that you turn in, but
Karma is completely optional and will not affect your grade
in any way.

Here are some suggestions that may pique your interest:

• Implement a player that randomly chooses what symbol to play.

• Implement a player that asks the user what to play.

• The game function will often run forever (e.g. if a deterministic player plays against
itself). Write a function that runs a game but stops and returns Draw if the game runs
for k rounds.

• Write a function that takes a (deterministic) player and returns a new player that will
beat the first player on the third round.

• Write a best two of three, best three of five, or best k of (2k − 1) tournament.

• Use tournament and rps_game to implement a rock-paper-scissors tournament. Find a
way to easily identify the winner.

• Use your code to implement a different game, such as tic-tac-toe.

• Use LATEXwith the 3110 style files for your written questions.

8

