
Prof. Clarkson
Fall 2014

CS 3110
Lecture 9: Modules

Today’s music: ToneMatrix demo
[https://www.youtube.com/watch?v=TaeeiLzfVmc]

Review

So far:
•  lots of language features
•  syntax, static semantics (type checking), and

dynamic semantics (evaluation)
•  how to build small programs

Today:
•  new language feature: modules
•  how to build big programs: abstraction and

specification

Question #1

What’s the largest program you’ve ever worked on,
by yourself or as part of a team?
A.  10-100 LoC
B.  100-1,000 LoC
C.  1,000-10,000 LoC

D.  10,000-100,000 LoC
E.  100,000 LoC or bigger

Scale

•  My PS2 solution: 366
•  cs3110 tool: 2,200
•  OCaml: 200,000
•  Unreal engine: 2,000,000
•  Windows 7: 40,000,000
 http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

...can’t be done by one person
...no individual programmer can understand all the details
...too complex to build with subset of OCaml we’ve seen so far

Modularity

Modular programming: code comprises
independent modules
– developed separately

– understand behavior of module in isolation
–  reason locally, not globally

Java features for modularity

•  classes, packages
– organize identifiers (classes, methods, fields, etc.) into

namespaces

•  interfaces
– describe related classes

•  public, protected, private
– control what is visible outside a namespace

OCaml features for modularity

•  modules
– organize identifiers (functions, values, etc.) into

namespaces

•  signatures
– describe related modules

•  abstract types
– control what is visible outside a namespace

OCaml modules
Syntax:
module ModuleName = struct
 definitions
end

–  the name must be capitalized
–  definitions can be any definition we’ve previously seen in top-level or in file

•  let, type, exception, etc.
–  creates a new namespace, must prefix values inside with name to access:

•  module M = struct let x = 42 end
•  let fortytwo = M.x

–  modules can be nested inside other modules
•  i.e., definitions can also be modules

–  every file myfile.ml with contents D is essentially wrapped in a module
definition: module Myfile = struct D end

Semantics: going on hiatus for awhile

Stack module

(* implement stacks as lists *)!
module Stack = struct!
!let empty = []!
!let is_empty s = s = []!
!let push x s = x :: s!
!let pop s = match s with !
! ![] -> failwith “Empty”!
!| x::xs -> (x,xs)!

end!
fst (Stack.pop !
 (Stack.push 1 Stack.empty)) --> 1!

Might seem backwards...
•  In Java, might write

 s = new Stack();
 s.push(1);
 s.pop();

•  The stack is to the left of the dot, the method name is to the right
•  In OCaml, it’s seemingly backward:

 let s = Stack.empty in
 let s’ = Stack.push 1 s in
 let (one,_) = Stack.pop s’

•  The stack is an argument to every function (common idiom is last argument)
•  Just a syntactic detail (boring)
•  Actually, the Java syntax is syntactic sugar:

–  Compiler can rewrite s.push(1) to push(s,1)
–  Method implementation in Java: every method receives its “this” argument as

implicit first argument

Opening modules
•  Write open ModuleName at top of file to “import” all definitions from

module
–  Can write push instead of Stack.push

•  Considered poor idiom to open lots of modules
–  Pollutes namespace: which module did foo come from?
–  Stylistic tradeoff between terseness and explicitness
–  Can do local opens instead:

 let one =
 let open Stack in
 fst (pop (push 1 empty))

–  Or locally bind short module name:
 let one =
 let module S = Stack in
 fst (S.pop (S.push 1 S.empty))

Opening modules
•  Write open ModuleName at top of file to “import” all definitions from

module
–  Can write push instead of Stack.push

•  Considered poor idiom to open lots of modules
–  Pollutes namespace: which module did foo come from?
–  Stylistic tradeoff between terseness and explicitness
–  Can do local opens instead:

 let one =
 let open Stack in
 fst (pop (push 1 empty))

–  Or locally bind short module name:
 let one =
 let module S = Stack in
 fst (S.pop (S.push 1 S.empty))

Opening modules
•  Write open ModuleName at top of file to “import” all definitions from

module
–  Can write push instead of Stack.push

•  Considered poor idiom to open lots of modules
–  Pollutes namespace: which module did foo come from?
–  Stylistic tradeoff between terseness and explicitness
–  Can do local opens instead:

 let one =
 let open Stack in
 fst (pop (push 1 empty))

–  Or locally bind short module name:
 let one =
 let module S = Stack in
 fst (S.pop (S.push 1 S.empty))

Decomposition
Modularity is about much more than namespace management

Divide et impera ... Divide and rule (or divide and conquer)

Decompose big problem into small subproblems:
•  Each subproblem at same level of detail
•  Each subproblem can be solved independently
•  Solutions to subproblems combine to solve original problem

e.g., sorting with merge sort
•  subproblem: divide list into pieces until each piece trivially sorted
•  subproblem: merge two sorted lists into single sorted list

e.g., dynamic semantics of a programming language
•  subproblem: divide language into syntactic pieces
•  subproblem: give evaluation rules for each piece in isolation

Decomposition

Perhaps the most common difficulty:
the sub-solutions don’t combine correctly

e.g., distributed knock-knock joke writing
e.g., distributed play writing
•  subproblems: list of characters, lines of each character, vs.
•  subproblems: number of acts, plot events in each act

Design tip: agree on division early; hard to change later

those subproblems are different abstractions of the problem

Abstraction

•  Forgetting information
•  Treating different things as though they were the

same

e.g., biological classification

Abstraction of the Camel

Abstraction

•  Forgetting information
•  Treating different things as though they were the

same

e.g., animal kingdom
e.g., files vs. block devices, inodes
e.g., high-level programming languages vs. machine
instruction set
e.g., floating point arithmetic vs. idealized math

Computational Thinking

•  Computational thinking is using
abstraction and decomposition
when... designing a large, complex
system.

•  Thinking like a computer scientist
means more than being able to
program a computer. It requires
thinking at multiple levels of
abstraction.

https://www.cs.cmu.edu/~15110-s13/Wing06-ct.pdf
http://research.microsoft.com/apps/video/
default.aspx?id=179285

Jeanette Wing
Corporate VP, MSR

Abstraction

Programming languages pre-define abstractions
•  Data structures like lists
•  Iterators like map and fold

Programming languages enable definition of new
abstractions
•  Procedural abstraction
•  Data abstraction
•  (Iteration abstraction)

Procedural Abstraction

Abstract from the details of a particular task, e.g.,
•  sqrt : float -> float
•  List.sort : ('a -> 'a -> int) ->
'a list -> 'a list

Abstract from how input is transformed into output
•  Identity of particular input or output isn’t important

•  But its type and any assumptions about it are

Data abstraction

Abstract from details of organizing data
•  stacks, symbol tables, environments, bank accounts,

polynomials, matrices, dictionaries, ...

Abstract from implementation of organization
•  Actual code used to add elements (e.g.) isn’t

important
•  But types of operations and assumptions about

what they do and what they require are important

OCaml Signatures

Syntax:
module type SIGNAME = sig
 declarations

end
–  the name by convention is all caps
–  declaration can be type or exception or a value declaration

•  val name : type
–  e.g.

•  module type S = sig val x : int end
–  creates a new namespace, must prefix declarations inside with name

to access
–  signatures can be nested inside other signatures

•  i.e., declarations can also be signatures

OCaml Signatures

Signatures are the “types” of modules
–  module ModuleName : SIGNAME = struct ...

end
–  everything declared in SIGNAME must be defined in

ModuleName
•  module type S1 = sig val x:int;; val y:int end
•  module M1 : S1 = struct let x = 42 end (* type

error *)
–  nothing except what’s declared in SIGNAME can be accessed

from outside ModuleName
•  module type S2 = sig val x:int end
•  module M2 : S2 = struct let x = 42;; let y=7

end
•  M2.y (* type error *)

Signatures provide a mechanism for abstraction

Compilation units

Compilation unit = myfile.ml + myfile.mli
If myfile.ml has contents DM
and myfile.mli has contents DS
then OCaml behaves essentially as though:
module type MYFILESIG = sig
 DS
end
module Myfile : MYFILESIG = struct
 DM
end

Stack signature

module type STACK = sig!
!val empty : 'a list!
!val is_empty : 'a list -> bool!
!val push : 'a -> 'a list -> 'a
list!
!val pop : 'a list -> 'a * 'a list!
end!
module Stack : STACK = struct !
!... (* as before *)!
end!

Stack Abstraction

•  Procedural abstraction? Yes.
•  Data abstraction? Not so much.
– Not abstracting from details of lists
– New OCaml feature: abstract types

•  In signature, just write “type t”
•  In module, write “type t = int list” (e.g.)
•  Inside module, it is known that t is a synonym for int
list
•  Outside module, nothing is known about t.

–  It’s abstract

Int Stack with abstract types
module type STACK = sig!

!type t!
!val empty : t!

 val is_empty : t -> bool!
 val push : int -> t -> t!
 val pop : t -> int * t!
end!
!
module Stack : STACK = struct!

!type t = int list!
!let empty = []!
!let is_empty s = s = []!
!let push x s = x :: s!
!let pop s = match s with !
! [] -> failwith "Empty"!
!| x::xs -> (x,xs)!

end!

Stack with abstract types
module type STACK = sig!

!type 'a t!
!val empty : 'a t!

 val is_empty : 'a t -> bool!
 val push : 'a -> 'a t -> 'a t!
 val pop : 'a t -> 'a * 'a t!
end!
!
module Stack : STACK = struct!

!type 'a t = 'a list!
!let empty = []!
!let is_empty s = s = []!
!let push x s = x :: s!
!let pop s = match s with !
! [] -> failwith "Empty"!
!| x::xs -> (x,xs)!

end!

Now we have procedural and data abstraction!

WRAP-UP FOR TODAY
Please hold still for 1 more minute

Upcoming events

•  PS3 released today
•  Clarkson’s office hours today cancelled because

of talk by visiting researcher

This is abstract.

THIS IS 3110

