
Prof. Clarkson
Fall 2014

CS 3110
Lecture 8: Closures

Today’s music: Selections from Doctor Who soundtracks, series 5-7

Review

Dynamic semantics:
•  how expressions evaluate
•  substitution model: substitute value for variable in

let expressions, function calls, etc.
•  environment model: maintain a data structure that

binds variables to values

Today:
•  semantics of function calls in environment model

Question #1

How much of PS2 have you finished?
A.  None
B.  About 25%
C.  About 50%
D.  About 75%
E.  I’m done!!!

Review: the core of OCaml

Essential sublanguage of OCaml:

e ::= c | (op) | x | (e1, …, en)
 | C e
 | e1 e2
 | fun x -> e
 | let x = e1 in e2
 | match e0 with pi -> ei

Missing, unimportant: records, lists, options, declarations,
patterns in function arguments and let bindings, if
Missing, important: rec

Review: evaluation

•  Expressions evaluate to values in a dynamic
environment

env :: e --> v
•  Evaluation is meaningless if expression does not type

check
•  Values are a syntactic subset of expressions:

v ::= c | (op) | (v1, …, vn)
 | C v
 | fun x -> e

Review: function values

Anonymous functions fun x-> e are values
env :: (fun x -> e) --> (fun x -> e)

Review: let expressions

To evaluate let x = e1 in e2 in environment env
Evaluate the binding expression e1 to a value v1 in
environment env

 env :: e1 --> v1
Extend the environment to bind x to v1
 env’ = env + {x=v1}

(newer bindings temporarily shadow older bindings)
Evaluate the body expression e2 to a value v2 in
environment env’
 env’ :: e2 --> v2

Return v2

Function application v1.0
To evaluate e1 e2 in environment env
Evaluate e2 to a value v2 in environment env

 env :: e2 --> v2
Note: right to left order, like tuples, which matters in the presence of side effects

Evaluate e1 to a value v1 in environment env
 env :: e1 --> v1
Note that v1 must be a function value fun x -> e
because function application type checks*

Extend environment to bind formal parameter x to actual value v2
 env’ = env + {x=v2}

Evaluate body e to a value v in environment env’
 env’ :: e --> v

Return v

*Or a built-in operator (op). In which case, immediately apply (op) to v2 and return result.

Function application rule v1.0

If env :: e2 --> v2
and env :: e1 --> (fun x -> e)
and env + {x=v2} :: e --> v
then env :: e1 e2 --> v

Function application example
let f = fun x -> x in f 0 --> 0

1.  Evaluate binding expression fun x->x to a value in empty environment

–  (already is a value)
2.  Extend environment to bind f to fun x->x
3.  Evaluate let-body expression f 0 in environment

env = {f=fun x->x}
1.  Evaluate argument 0 to a value

•  (already is a value)
2.  Evaluate f to a value

•  By variable rule, f evaluates to env(f), i.e., fun x->x
3.  Extend environment to map formal parameter x to actual value 0,

i.e., env’ = {f=(fun x->x), x=0}
4.  Evaluate function body x to value

•  By variable rule, x evaluates to env’(x), i.e., 0
5.  Return 0

Function application example
let f = fun x -> x in f 0 --> 0

Another way of expressing the previous slide:
1.  By function value rule,

{} :: fun x -> x --> fun x -> x
2.  By constant rule, {f = fun x -> x} :: 0 --> 0
3.  By variable rule,

{f = fun x -> x} :: f --> fun x-> x
4.  By variable rule, {f=fun x -> x, x=0} :: x --> 0
5.  By function application rule with 2 and 3 and 4,

{f=fun x -> x} :: f 0 --> 0
6.  By let rule with 1 and 5,

let f = fun x -> x in f 0 --> 0

Hard example

let x = 1 in
let f = fun y -> x in
let x = 2 in
 f 0

What does our dynamic semantics say it evaluates to?
What does OCaml say?

What do YOU say?

Question #2

What do you think this expression should evaluate to?
let x = 1 in
let f = fun y -> x in
let x = 2 in
 f 0

A.  1

B.  2

Hard example: OCaml

What does OCaml say this evaluates to?
let x = 1 in
let f = fun y -> x in
let x = 2 in
 f 0
- : int = 1

Hard example: our semantics
What does our semantics say?
let x = 1 in
{x=1} let f = fun y -> x in
{x=1,f=fun y->x} let x = 2 in
 {x=2,f=fun y->x} f 0

{x=2,f=fun y->x} :: f 0 --> ?
1.  Evaluate 0 to a value, i.e., 0
2.  Evaluate f to a value, i.e., fun y->x
3.  Extend environment to map parameter:

{x=2, f=(fun y->x), y=0}
4.  Evaluate body x in that environment
5.  Return 2

2 <> 1

Why different answers?

Two different rules for variable scope:
•  Rule of dynamic scope (our semantics)
•  Rule of lexical scope (OCaml)

Dynamic scope

Rule of dynamic scope: The body of a function is
evaluated in the current dynamic environment at
the time the function is called, not the old
dynamic environment that existed at the time the
function was defined.
–  Causes our semantics to use latest binding of x
–  Thus return 2

Lexical scope

Rule of lexical scope: The body of a function is
evaluated in the old dynamic environment that
existed at the time the function was defined, not
the current environment when the function is
called.
–  Causes OCaml to use earlier binding of x
–  Thus return 1

Lexical scope

Rule of lexical scope: The body of a function is
evaluated in the old dynamic environment that
existed at the time the function was defined, not
the current environment when the function is
called.
–  Causes OCaml to use earlier binding of x
–  Thus return 1

Scope
Rule of dynamic scope: The body of a function is evaluated in the current
dynamic environment at the time the function is called, not the old
dynamic environment that existed at the time the function was defined.
–  Causes our semantics to use latest binding of x
–  Thus return 2

Rule of lexical scope: The body of a function is evaluated in the old
dynamic environment that existed at the time the function was defined,
not the current environment when the function is called.
–  Causes OCaml to use earlier binding of x
–  Thus return 1

(In both, environment is extended to map formal parameter to actual value.)
Why would you want one vs. the other? Let’s come back to that...

Implementing time travel
Q: How can functions be evaluated in old environments?
A: The language implementation keeps them around as necessary

•  A function value is really a data structure that has two parts:
–  The code (obviously)
–  The environment that was current when the function was defined

•  Gives meaning to all the free variables of the function body
–  Like a “pair”

•  But you cannot access the pieces, or directly write one down in the language syntax
•  All you can do is call it

–  This data structure is called a function closure
•  A function application:

–  evaluates the code part of the closure
–  in the environment part of the closure
–  extended to bind the function argument

21

Hard example revisited

22

(* 1 *) let x = 1
(* 2 *) let f = fun y -> x
(* 3 *) let x = 2
(* 4 *) let z = f 0

 With lexical scope:

•  Line 2 creates a closure and binds f to it:
–  Code: fun y -> x
–  Environment: {x=1}

•  Line 4 calls that closure with 0 as argument

–  In function body, y maps to 0 and x maps to 1
•  So z is bound to 1

Question #3

23

(* 1 *) let x = 1
(* 2 *) let f y = x + y
(* 3 *) let x = 3
(* 4 *) let y = 4
(* 5 *) let z = f (x + y)

What value does z have with lexical scope?
A.  1

B.  5
C.  7

D.  8

E.  10

Question #3

24

(* 1 *) let x = 1
(* 2 *) let f y = x + y
(* 3 *) let x = 3
(* 4 *) let y = 4
(* 5 *) let z = f (x + y)

•  Line 2 creates a closure and binds f to it:
–  Code: fun y -> x+y
–  Environment: {x=1}

•  Line 5 calls that closure with 7 as argument

–  In function body, x maps to 1 and y maps to 7
•  So z is bound to 8

Question #3

25

(* 1 *) let x = 1
(* 2 *) let f y = x + y
(* 3 *) let x = 3
(* 4 *) let y = 4
(* 5 *) let z = f (x + y)

What value does z have with lexical scope?
A.  1

B.  5
C.  7

D.  8
E.  10

Question #4

26

(* 1 *) let x = 1
(* 2 *) let f y = x + y
(* 3 *) let x = 3
(* 4 *) let y = 4
(* 5 *) let z = f (x + y)

What value does z have with dynamic scope?
A.  1

B.  5
C.  7

D.  8

E.  10

Question #4

27

•  At line 5, environment is {x=3,y=4}
•  Line 5 calls f with argument 7

–  body of f is evaluated in current environment,

•  but with y bound to argument value 7
•  argument binding shadows previous binding

–  So x is 3 and y is 7 and result of call is 10
•  Finally, z is bound to 10

(* 1 *) let x = 1
(* 2 *) let f y = x + y
(* 3 *) let x = 3
(* 4 *) let y = 4
(* 5 *) let z = f (x + y)

Question #4

28

(* 1 *) let x = 1
(* 2 *) let f y = x + y
(* 3 *) let x = 3
(* 4 *) let y = 4
(* 5 *) let z = f (x + y)

What value does z have with dynamic scope?
A.  1

B.  5
C.  7

D.  8

E.  10

Closure notation

<<code, environment>>
e.g.,
<<fun y -> x+y, {x=1}>>

With lexical scoping, well-typed programs are
guaranteed never to have any variables in the code
body other than function argument and variables
bound by closure environment.

Function application v2.0
To evaluate e1 e2 in environment env
Evaluate e2 to a value v2 in environment env

 env :: e2 --> v2
Evaluate e1 to a value v1 in environment env

 env :: e1 --> v1
Note that v1 must be a function closure <<fun x -> e, env’>>*

Extend closure environment to bind formal parameter x to actual value
v2

 env’’ = env’ + {x=v2}
Evaluate body e to a value v in environment env’’

 env’’ :: e --> v
Return v

*Or a built-in operator (op). In which case, immediately apply (op) to v2 and return result.

Function application rule v2.0

If env :: e2 --> v2
and env :: e1 -->
 <<fun x -> e,env’>>

and env’ + {x=v2} :: e --> v
then env :: e1 e2 --> v

Function values v2.0

Anonymous functions fun x-> e are closures
env :: (fun x -> e) -->
 <<fun x -> e, env>>

Lexical vs. dynamic scope

•  Consensus after decades of programming language design is
that lexical scope is the right choice

•  Dynamic scope is convenient in some situations
–  Some languages use it as the norm (e.g., Emacs LISP, LaTeX)
–  Some languages have special ways to do it (e.g., Perl, Racket)
–  But most languages just don’t have it

•  Exception handling resembles dynamic scope:
–  raise e transfers control to the “most recent” exception

handler
–  like how dynamic scope uses “most recent” binding of variable

33

Why lexical scope?
1.  Programmer can freely change names of local

variables

(* 1 *) let x = 1
(* 2 *) let f y =
 let x = y + 1 in
 fun z -> x+y+z
(* 3 *) let x = 3
(* 4 *) let w = (f 4) 6

Lexical scope: evaluates to 15
Dynamic scope: evaluates to 13

Lexical scope: evaluates to 15
Dynamic scope: run-time error

•  (f 4) --> fun z -> q+y+z
•  (fun z -> q+y+z) 6 --> q+y+6
•  at line 4, env. doesn’t bind q

(* 1 *) let x = 0
(* 2 *) let f y =
 let q = y + 1 in
 fun z -> q+y+z
(* 3 *) let x = 3
(* 4 *) let w = (f 4) 6

Why lexical scope?
2.  Type checker can prevent run-time errors

Lexical scope: evaluates to 15
Dynamic scope: evaluates to 13

Lexical scope: evaluates to 15
Dynamic scope: run-time error

•  (f 4) --> fun z -> x+y+z
•  (fun z -> x+y+z) 6 --> x+y+6
•  at line 4, env. binds x to string;

can’t add string to int

(* 1 *) let x = 1
(* 2 *) let f y =
 let x = y + 1 in
 fun z -> x+y+z
(* 3 *) let x = 3
(* 4 *) let w = (f 4) 6

(* 1 *) let x = 0
(* 2 *) let f y =
 let x = y + 1 in
 fun z -> x+y+z
(* 3 *) let x = “hi”
(* 4 *) let w = (f 4) 6

Progress

e ::= c | (op) | x | (e1, …, en)
 | C e
 | e1 e2
 | fun x -> e
 | let x = e1 in e2
 | match e0 with pi -> ei

But we still don’t have let rec

Recursive functions

e ::= c | (op) | x | (e1, …, en)
 | C e
 | e1 e2
 | fun x -> e
 | let x = e1 in e2
 | match e0 with pi -> ei
 | let rec f x = e1 in e2

Let rec expressions

To evaluate let rec f x = e1 in e2 in
environment env
don’t evaluate the binding expression e1
Extend the environment to bind f to a recursive closure
env’ = env +
 {f=<<f, fun x -> e1, env>>}

Evaluate the body expression e2 to a value v2 in
environment env’
 env’ :: e2 --> v2

Return v2

Function application v3.0
To evaluate e1 e2 in environment env
Evaluate e2 to a value v2 in environment env

 env :: e2 --> v2
Evaluate e1 to a value v1 in environment env

 env :: e1 --> v1
Note that v1 must be a recursive closure cl=<<f, fun x -> e, env’>>
or a closure <<fun x -> e, env’>>

Extend closure environment to bind formal parameter x to actual value v2 and
(if present) function name f to the closure

 env’’ = env’ + {x=v2,f=cl}
 That’s where the recursion happens: name is bound to “itself” inside call

Evaluate body e to a value v in environment env’’
 env’’ :: e --> v

Return v

Closures in OCaml
clarkson@chardonnay ~/share/ocaml-4.02.0/
bytecomp
$ grep Kclosure *.ml
bytegen.ml: (Kclosure(lbl, List.length
fv) :: cont)
bytegen.ml: (Kclosurerec(lbls,
List.length fv) ::
emitcode.ml: | Kclosure(lbl, n) -> out
opCLOSURE; out_int n; out_label lbl
emitcode.ml: | Kclosurerec(lbls, n) ->
instruct.ml: | Kclosure of label * int
instruct.ml: | Kclosurerec of label list * int
printinstr.ml: | Kclosure(lbl, n) ->
printinstr.ml: | Kclosurerec(lbls, n) ->

Closures in OCaml

•  Closure conversion is an important phase of
compiling many functional languages

•  Expands on ideas we’ve seen here
– Many optimizations possible

– Especially, better handling of recursive functions

Closures in Java

•  Nested classes can simulate closures
–  Used everywhere for Swing GUI!

http://docs.oracle.com/javase/tutorial/uiswing/events/
generalrules.html#innerClasses

–  You’ve done it yourself already in 2110
•  Java 8 adds higher-order functions and closures
•  Can even think of OCaml closures as resembling Java

objects:
–  closure has a single method, the code part, that can be

invoked
–  closure has many fields, the environment part, that can be

accessed

42

Closures in C

•  In C, a function pointer is just a code pointer, period.
No environment.

•  To simulate closures, a common idiom:
Define function pointers to take an extra, explicit
environment argument

•  But without generics, no good choice for type of list elements or
the environment

•  Use void* and various type casts…

•  From Linux kernel:
http://lxr.free-electrons.com/source/include/linux/
kthread.h#L13

43

WRAP-UP FOR TODAY
Please hold still for 1 more minute

Upcoming events

•  PS2 is due tonight at 11:59 pm
•  Clarkson permanent(?) office hours:

Tuesday & Thursday 3-4 pm

This is closure.

THIS IS 3110

