
Prof. Clarkson
Fall 2014

CS 3110
Lecture 7: The dynamic environment

Today’s music: “Down to Earth” by Peter Gabriel from the WALL-E soundtrack

Review

Features so far: variables, operators, let
expressions, if expressions, functions (higher-order,
anonymous), datatypes, records, lists, options,
match expressions, type variables

Today:
•  Improved evaluation rules

Question #1

How much of PS2 have you finished?
A.  None
B.  About 25%
C.  About 50%
D.  About 75%
E.  I’m done!!!

PS1 handback

•  Numeric scores on CMS this afternoon
•  Written comments on hardcopies in the homework handback

room around the same time
•  Go over questions & talk about solutions in recitation on

Wednesday
–  Also go over a Git tutorial

•  Regrades? Sure! Submit request by CMS within one week
–  Always good to talk to your TA in advance; can save time and

trouble
–  We reserve the right to regrade entire solution; grade could go up or

down
–  Want to improve your final grade in course? Spend your time on

making PS2 great, rather than getting one more point on PS1

Semantics

•  Dynamic semantics
– How expressions evaluate
– Dynamic: execution is in motion

– Evaluation rules e-->v

•  Static semantics
– How expressions type check (among other things)
– Static: execution is not yet moving

– Type checking rules e : t

Dynamic semantics
Today: careful account of dynamic semantics of the essential, core features of
OCaml
•  many rules we’ve seen already
•  some new twists along the way

Change our model of evaluation:
•  Substitution model: substitute value for variable in body of let expression &

in body of function
–  What we’ve done doing so far
–  Very tricky to define substitution correctly
–  Good mental model, not really what OCaml does

•  Environment model: keep a data structure around that binds variables to
values
–  What we’ll do now
–  Also a good mental model, much closer to what OCaml really does

The core of OCaml
Essential sublanguage of OCaml:

e ::= c | (op) | x | (e1, …, en)
 | C e
 | e1 e2
 | fun x -> e
 | let x = e1 in e2
 | match e0 with pi -> ei

Missing, unimportant: records, lists, options, declarations, patterns in function
arguments and let bindings, if
Missing, important: rec
Extraneous: all we really need is e ::= x | e1 e2 | fun x -> e

Evaluation

•  Expressions evaluate to values
e --> v

•  Long arrow means “evaluates to”
•  Recall: evaluation is meaningless if expression

does not type check

•  Values “have no further computation to do”
– So they trivially evaluate to themselves: v-->v

Values

Values are a syntactic subset of expressions:

v ::= c | (op) | (v1, …, vn)
 | C v
 | fun x -> e

Not values: function application, let expression,
match expression

Tuples

To evaluate (e1,...en),
Evaluate the subexpressions:

 Evaluate en --> vn
 and … e1 --> v1

Return (v1,...vn)

In which case,
(e1,...en) --> (v1,...vn)

Tuple evaluation rule

If en --> vn
and …
and e2 --> v2
and e1 --> v1
then (e1,...en) --> (v1,...vn)

e.g.,
(+) 1 1 --> 2 (trust me)
and (+) 2 2 --> 4 (trust me)
so ((+) 1 1, (+) 2 2) --> (2,4)

Question #2

If we changed evaluation order to be e1 first, then
e2, ... up to en, which of the following expressions
would evaluate to a different value?

A.  (0+1,2*3)
B.  (let x = 3 in x, “hi”)
C.  ((), (fun x -> x+1) 1)
D.  All the above
E.  None of the above

Question #2

If we changed evaluation order to be e1 first, then
e2, ... up to en, which of the following expressions
would evaluate to a different value?

A.  (0+1,2*3)
B.  (let x = 3 in x, “hi”)
C.  ((), (fun x -> x+1) 1)
D.  All the above
E.  None of the above

Tuple evaluation order

Q: What order are the ei evaluated in?
A: It doesn’t matter. Without imperative features, no
program can ever distinguish the order of evaluation.
A: Right to left: en then ... then e1.
((print_string “left\n”; 0),
 (print_string “right\n”; 1))
(exceptions are actually side effects...but we let you use
them anyway on the problem sets)

Constructors

To evaluate C e,
Evaluate the subexpression:

 e --> v
Return C v

In which case, C e --> C v

Constructor evaluation rule

If e --> v
then C e --> C v

e.g.,
(+) 1 1 --> 2
so Some ((+) 1 1) --> Some 2

Constants

•  Constants are already values
– 42 is already a value
– “3110” is already a value
– () is already a value

•  So c-->c
–  (evaluation rule here is trivial)

•  Constructors that carry no data behave like
constants
– true is already a value
– Monday is already a value

Operators and functions

•  Functions are values
–  Operators (op) are built-in functions
–  Anonymous functions fun x-> e are user-defined

functions
•  So both are already values
–  fun x -> x+1 --> fun x -> x+1
–  (+) --> (+)
–  (~-) --> (~-)

•  In general,
–  (op) --> (op)
–  (fun x -> e) --> (fun x -> e)

•  Evaluation rule again trivial, like for constants

Progress

e ::= c | (op) | x | (e1, …, en)
 | C e
 | e1 e2
 | fun x -> e
 | let x = e1 in e2
 | match e0 with pi -> ei

Variables

•  What does a variable name evaluate to?
x --> ???

•  Trick question: we don’t have enough information to
answer it

•  Need to know what value variable was bound to

Question #3

What do these evaluate to?
– let x = 2 in x+1
– (fun x -> x+1) 2
–  match 2 with x -> x+1

A.  2, 2, and 2
B.  3, 3, and 3
C.  3, 2, and 3
D.  3, 3, and 2
E.  2, 3, and 3

Question #3

What do these evaluate to?
– let x = 2 in x+1
– (fun x -> x+1) 2
–  match 2 with x -> x+1

A.  2, 2, and 2
B.  3, 3, and 3
C.  3, 2, and 3
D.  3, 3, and 2
E.  2, 3, and 3

Variables

•  What does a variable name evaluate to?
x --> ???

•  Trick question: we don’t have enough information to
answer it

•  Need to know what value variable was bound to
–  e.g., let x = 2 in x+1
–  e.g., (fun x -> x+1) 2
–  e.g., match 2 with x -> x+1
–  All evaluate to 3, but we reach a point where we need to

know binding of x
•  Solution: dynamic environment

Dynamic environment

•  Set of bindings of all current variables
–  e.g.,{ x=42, y=“3110”} would be bindings at ^^ in
let x=42 in let y = “3110” in ^^ e

•  Changes throughout evaluation:
– No bindings at ^^:
^^ let x = 42 in
 let y = “3110”
 in e

– One binding {x=42} at ^^:
let x = 42 in
^^ let y = “3110”
 in e

Variable evaluation

To evaluate x in environment env
Look up value v of x in env
Return v

Type checking guarantees that variable is bound, so
we can’t ever fail to find a binding in dynamic
environment

Variable evaluation

•  New notation: env :: e --> v
– meaning: in dynamic environment env, expression
e evaluates to value v

•  New notation: env(x)
– meaning: the value to which env binds x

Variable evaluation rule

env :: x --> v
 where v = env(x)

so we could instead more simply write
env :: x --> env(x)

Redo: rules with environment
Constants, operators, functions:
 env :: c --> c
 env :: (op) --> (op)
env :: (fun x -> e) --> (fun x -> e)

Constructors:
If env :: e --> v
then env :: C e --> C v

Tuples:
If env :: en --> vn
and …
and env :: e1 --> v1
then env :: (e1,...en) --> (v1,...vn)

Why the same environment?

Scope
•  Bindings are in effect only in the scope (the “block”) in which they occur

let x=42 in
 ^^ x + (let y=“3110” in
 int_of_string y)
–  y is not in scope at ^^

•  Exactly what you’re used to from (say) Java
•  Bindings inside elements of tuples are not in scope outside that

element
–  ((let x = 1 in x+1), (let y=2 in y+2))
–  x is not in scope in second component
–  y is not in scope in first component
–  so dynamic environment stays the same from one component to another

•  env :: ei --> vi

Progress

e ::= c | (op) | x | (e1, …, en)
 | C e
 | e1 e2
 | fun x -> e
 | let x = e1 in e2
 | match e0 with pi -> ei

Let expressions

To evaluate let x = e1 in e2 in environment env
Evaluate the binding expression e1 to a value v1 in
environment env

 env :: e1 --> v1
Extend the environment to bind x to v1
 env’ = env + {x=v1}

Evaluate the body expression e2 to a value v2 in
environment env’
 env’ :: e2 --> v2

Return v2

Let expression evaluation rule
If env :: e1 --> v1
and if env+{x=v1} :: e2 --> v2
then env :: let x=e1 in e2 --> v2

Example:

 let x = 42 in x --> 42
Why?
1.  Evaluate binding expression 42 to value 42

–  By constant rule, {} :: 42 --> 42
2.  Extend environment to bind x to 42
3.  Evaluate body expression x to value 42 in extended environment

–  By variable rule, {x=42} :: x --> 42
(why? if env={x=42} then env(x) = 42)

4.  Return value of body expression, 42

Let expression longer example

 let x = 42 in let y = “3110” in x

1.  Evaluate binding expression 42 to value 42
2.  Extend environment to bind x to 42
–  env is now {x=42}

3.  Evaluate body expression let y = “3110” in x to value 42
1.  Evaluate binding expression “3110” to value “3110”
2.  Extend environment to bind y to “3110”

•  env is now {x=42,y=“3110”}
3.  Evaluate body expression x to value 42

1.  Look up value of x in environment, return 42

Let expression example

 let x = 42 in let y = “3110” in x

Another way to express previous slide:
1.  By variable rule, {x=42,y=“3110”} :: x --> 42
2.  By constant rule, {x=42} :: “3110” --> “3110”
3.  By let rule with (1) and (2), {x=42} :: let y =

“3110” in x --> 42
4.  By constant rule, {} :: 42 --> 42
5.  By let rule with (3) and (4), {} :: let x = 42 in

let y = “3110” in x --> 42

Initial environment

•  Can add an entire file’s worth of bindings to the
dynamic environment with open Name
–  You’ve been doing that in unit test files

•  OCaml always does open Pervasives at the
beginning
– (+), (=), int_of_string, (@),
print_string, fst, ...

– The environment is never really empty
•  it’s always polluted? :)

–  But we write {} anyway

Extending the environment
•  What does env+{x=v} really mean?
•  Illuminating example:

let x = 0 in
let x = 1 in
 x
--> 1

•  Environment extension can’t just be set union
–  We’d get {x=0,x=1} and now we don’t know what x is!

•  Instead inner binding shadows outer binding
–  Casts its shadow over it; temporarily replaces it

•  Environments at particular places (abuse OCaml syntax here):
let x = ({} 0) in
({x=0} let x = 1 in
 ({x=1} x))

Shadowing is not assignment

let x = 0 in
 x + (let x = 1 in x)
--> 1

let x = 0 in
 (let x = 1 in x) + x
--> 1

(Proof sketch)

1.  By constant rule, {x=0} :: 1 --> 1
2.  By variable rule, {x=1} :: x --> 1
3.  By let rule with 1 and 2, {x=0} :: let x = 1

in x --> 1
4.  By variable rule, {x=0} :: x --> 0
5.  By intuition (haven’t done function application yet) with

3 and 4, {x=0} :: x + (let x =1 in x) --
> 1

6.  By constant rule, {} :: 0 --> 0
7.  By let rule with 5 and 6, {} :: let x = 0 in x

+ (let x = 1 in x) --> 1

Progress

e ::= c | (op) | x | (e1, …, en)
 | C e
 | e1 e2
 | fun x -> e
 | let x = e1 in e2
 | match e0 with pi -> ei

Match expressions

To evaluate match e0 with p1 -> e1
| ... | pn -> en in environment env
Evaluate expression e0 to value v0 in env
Find the first pattern pi that matches v0
 That match produces new bindings b

Evaluate expression ei to value vi in
environment env+b
Return vi

Match expression rule

If env :: e0 --> v0
and pi is the first pattern to match v0
and that match produces bindings b
and env+b :: ei --> vi
then env :: match e with p1 -> e1
| ... | pn -> en --> vi

Example of match

{} :: match 42 with x -> x --> 42

1.  Evaluate expression 42 to value 42
2.  Match 42 against patterns; pattern x is the first

that matches; it produces binding {x=42}
3.  Evaluate expression x to value 42 in

environment {}+{x=42}
4.  Return 42

Example of match

{} :: match 42 with x -> x --> 42

Another way to express previous slide:
1.  By constant rule, {} :: 42 --> 42
2.  By pattern matching rules, x matches 42 and

produces binding x=42
3.  By variable rule, {x=42} :: x --> 42
4.  By match rule with 2 and 3, {} :: match 42

with x -> x --> 42

Progress

e ::= c | (op) | x | (e1, …, en)
 | C e
 | e1 e2
 | fun x -> e
 | let x = e1 in e2
 | match e0 with pi -> ei

WRAP-UP FOR TODAY
Please hold still for 1 more minute

Upcoming events

•  PS2 is due Thursday at 11:59 pm
•  Clarkson permanent(?) office hours:

Tuesday & Thursday 3-4 pm

This is dynamic.

THIS IS 3110

