
Prof. Clarkson
Fall 2014

CS 3110
Lecture 6: Map and Fold

Today’s music: Selections from the soundtrack to 2001: A Space Odyssey

Review

Features so far: variables, operators, let
expressions, if expressions, functions (higher-order,
anonymous), datatypes, records, lists, options,
match expressions, type variables

Today:
•  Map, fold, and other higher-order functions

Question #1

How much of PS1 have you finished?
A.  None
B.  About 25%
C.  About 50%
D.  About 75%
E.  I’m done!!!

PS1

PS1 is due tonight at 11:59 pm
– No extensions
– Use up a “late pass” to submit 48 hours late

– No compile? Zero.
•  Your responsibility to double check your code before

submitting
•  We give you a courtesy email if your code doesn’t compile

•  We can’t guarantee delivery of email
•  Check your email, even spam folder, tomorrow

Review: higher-order functions

•  Functions are values
•  Can use them anywhere we use values
– Arguments, results, parts of tuples, bound to variables,

carried by datatype constructors or exceptions, …

•  First-class citizens of language, afforded all the
“rights” of any other values
–  Functions can take functions as arguments
–  Functions can return functions as results

 …functions can be higher-order

5

Review: anonymous functions

(aka function expressions)
•  Syntax:

•  Type checking:
– Conclude that fun x -> e : ta -> tb

if e:tb under assumption x:ta
•  No assumption for function name itself, unlike functions

declared with let rec!

•  Evaluation:
– A function is already a value

fun x -> e fun p -> e
really

Lambda
•  In PL, anonymous functions a.k.a. lambda expressions

 λx . e

•  The lambda means “what follows is an anonymous function”

–  x is its argument
–  e is its body
–  Just like fun x -> e, but slightly different syntax

•  Standard feature of any functional language (ML, Haskell, Scheme, …)

•  You’ll see “lambda” show up in many places in PL, e.g.:
–  http://www.php.net/manual/en/function.create-function.php
–  http://lambda-the-ultimate.org/
–  https://www.youtube.com/watch?v=Ci48kqp11F8

7

Recall: every OCaml function takes exactly one
argument

– Can encode n arguments with one n-tuple

– Or, can write function that takes one argument
and returns a function that takes another
argument and…

– Called “currying” after famous logician Haskell
Curry

Review: currying

8

vs.

Haskell B. Curry

9

1900-1982

Languages Haskell and Curry named for him

Curry-Howard isomorphism:
•  Types are logical formulas
•  Programs are logical proofs

fun x -> x : ‘a -> ‘a

HUGE HIGHER-ORDER FUNCTIONS

Discovery of the monolith:
https://www.youtube.com/watch?v=ML1OZCHixR0

bad style!

Map

11

map (fun x -> shirt_color(x)) []

= [gold, blue, red] 	

Map

12

map shirt_color []

= [gold, blue, red] 	

Map

Map is HUGE:
–  You use it all the time once you know it

–  Exists in standard library as List.map, but the idea can be used in
any data structure (trees, stacks, queues…)

13

let rec map f xs =
 match xs with
 [] -> []
 | x::xs’ -> (f x)::(map f xs’)

 map : ('a -> 'b) -> 'a list -> 'b list

Question #2

What is value of lst after this code?

A.  [1;2;3;4]
B.  [2;4]
C.  [false; true; false; true]
D.  false

let is_even x = (x mod 2 = 0)
let lst = map is_even [1;2;3;4]

Question #2

What is value of lst after this code?

A.  [1;2;3;4]
B.  [2;4]
C.  [false; true; false; true]
D.  false

let is_even x = (x mod 2 = 0)
let lst = map is_even [1;2;3;4]

Filter

16

filter is_vulcan []

= [] 	

(er, half vulcan)

Filter

Filter is also HUGE
–  In library: List.filter

17

let filter f xs =
 match xs with
 [] -> []
 | x::xs’ -> if f x
 then x::(filter f xs’)
 else filter f xs’

filter : ('a -> bool) -> 'a list -> 'a list

Question #3

What is value of lst after this code?

A.  [1;2;3;4]
B.  [2;4]
C.  [false; true; false; true]
D.  false

let is_even x = (x mod 2 = 0)
let lst = filter is_even [1;2;3;4]

Question #3

What is value of lst after this code?

A.  [1;2;3;4]
B.  [2;4]
C.  [false; true; false; true]
D.  false

let is_even x = (x mod 2 = 0)
let lst = filter is_even [1;2;3;4]

Iterators
•  Map and filter are iterators
–  Not built-in to the language, an idiom

•  Benefit of iterators: separate recursive traversal from
data processing
–  Can reuse same traversal for different data processing
–  Can reuse same data processing for different data

structures
–  leads to modular, maintainable, beautiful code!

•  So far: iterators that change or omit data
–  what about combining data?
–  e.g., sum all elements of list

20

Fold v1.0

Idea: stick an operator between every element of list

folding [1;2;3] with (+)!
becomes
1+2+3!
-->!
6!

Fold v2.0

Idea: stick an operator between every element of list
But list could have 1 element, so need an initial value

folding [1] with 0 and (+)!
becomes
0+1!
-->!
1!

Fold v2.0

Idea: stick an operator between every element of list
But list could have 1 element, so need an initial value

folding [1;2;3] with 0 and (+)!
becomes
0+1+2+3!

-->!
6!

Fold v2.0

Idea: stick an operator between every element of list
But list could have 1 element, so need an initial value
Or list could be empty; just return initial value

folding [] with 0 and (+)!

becomes
0!

Question #4

What should the result of folding [1;2;3;4]
with 1 and (*) be?

A.  1
B.  24

C.  10
D.  0

Question #4

What should the result of folding [1;2;3;4]
with 1 and (*) be?

A.  1
B.  24
C.  10
D.  0

Fold v3.0

Idea: stick an operator between every element of list
But list could have 1 element, so need an initial value
Or list could be empty; just return initial value
Implementation detail: iterate left-to-right or right-to-left?

folding [1;2;3] with 0 and (+)!
left to right becomes: ((0+1)+2)+3
right to left becomes: 1+(2+(3+0))
Both evaluate to 6; does it matter?

Yes: not all operators are associative, e.g. subtraction,
division, exponentiation, …

Fold v4.0

•  (+) accumulated a result of the same type as list itself
•  What about operators that change the type?
–  e.g., :: has type ‘a -> ‘a list -> ‘a list!

folding from the right [1;2;3] with [] and ::!
should produce

1::(2::(3::[])) = [1;2;3]!
•  So the operator needs to accept
–  the accumulated result so far, and
–  the next element of the list

 …which may have different types!

Fold for real

Two versions in OCaml library:

List.fold_left !
: ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a!
!
!
List.fold_right !
: ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b!

Fold for real

Two versions in OCaml library:

List.fold_left !
: ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a!
!
!
List.fold_right !
: ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b!

Operator

Fold for real

Two versions in OCaml library:

List.fold_left !
: ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a!
!
!
List.fold_right !
: ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b!

Input list

Fold for real

Two versions in OCaml library:

List.fold_left !
: ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a!
!
!
List.fold_right !
: ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b!

Initial value of accumulator

Fold for real

Two versions in OCaml library:

List.fold_left !
: ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a!
!
!
List.fold_right !
: ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b!

Final value of accumulator

fold_left!

Accumulates an answer by
•  repeatedly applying f to “answer so far”,
•  starting with initial value acc, !
•  folding “from the left”

fold_left f acc [a;b;c] !
computes
f (f (f acc a) b) c!

34

let rec fold_left f acc xs =
 match xs with
 [] -> acc
 | x::xs’ -> fold_left f (f acc x) xs’

fold_right!

Accumulates an answer by
•  repeatedly applying f to “answer so far”,
•  starting with initial value acc, !
•  folding “from the right”

fold_right f [a;b;c] acc !
computes
f a (f b (f c acc))!

35

let rec fold_right f xs acc =
 match xs with
 [] -> acc
 | x::xs’ -> f x (fold_right f xs’ acc)

Behold the HUGE power of fold
Implement so many other functions with fold!

36

let rev xs = fold_left (fun xs x -> x::xs) [] xs
let length xs = fold_left (fun a _ -> a+1) 0 xs
let map f xs = fold_right
 (fun x a -> (f x)::a) xs []
let filter f xs = fold_right
 (fun x a -> if f x then x::a else a) xs []

Beware the efficiency of fold

•  Implementation of fold_left more space
efficient than fold_right for long lists

•  But that doesn’t mean that one is strictly better
than the other

•  More in recitation…

Map-Reduce

•  Fold has many synonyms/cousins in various functional
languages, including scan and reduce!

•  Google organizes large-scale data-parallel computations with
Map-Reduce
–  open source implementation by Apache called Hadoop

“[Google’s Map-Reduce] abstraction is inspired by the map and reduce
primitives present in Lisp and many other functional languages. We
realized that most of our computations involved applying a map
operation to each logical record in our input in order to compute a set of
intermediate key/value pairs, and then applying a reduce operation to
all the values that shared the same key in order to combine the derived
data appropriately."
[Dean and Ghemawat, 2008]

WRAP-UP FOR TODAY
Please hold still for 1 more minute

Upcoming events

•  PS1 is due tonight at 11:59 pm
•  PS2 will be issued today, due in one week
•  Clarkson office hours today: 2-4 pm

This is HUGE

THIS IS 3110

