
Prof. Clarkson 
Fall 2014 

CS 3110 
Lecture 5: Pattern Matching 

Today’s music:  “Puff, the Magic Dragon” by Peter, Paul & Mary 



Review 

Features so far:  variables, operators, let 
expressions, if expressions, functions (higher-order, 
anonymous), datatypes, records, lists, options 

 
Today: 
•  Pattern matching 
•  A mind-altering experience 
•  Polymorphic datatypes 
 
 



Question #1 

How much of PS1 have you finished? 
A.  None 
B.  About 25% 
C.  About 50% 
D.  About 75% 
E.  I’m done!!! 



Review 
Algebraic datatype we saw last time: 

Here’s a card:   

 
•  Type annotation: two_clubs has type suit*rank 
•  Wouldn’t it be nice to write something more meaningful (say, card) 

instead of suit*rank? 
–  Would prevent (e.g.) having to remember whether suit comes first or 
rank 
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type suit = Club | Diamond | Heart | Spade 
type rank = Jack | Queen | King  
          | Ace | Num of int 

let two_clubs : suit*rank = (Club, Num 2) 



Type synonym 

A type synonym is a new kind of declaration 

– Creates another name for a type 

– The type and the name are interchangeable in every 
way 
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type name = t 



Why have type synonyms? 

•  For now: convenience and style  
–  (makes code self-documenting!) 

–  Write functions of type (e.g.) 
card -> bool 

–  Note: okay if REPL says your function has type  
 suit * rank -> bool 

•  Later: other uses related to modularity 
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type card = suit*rank 
let two_clubs : card = (Club, Num 2) 
 



Datatypes: Syntax and semantics 

•  Syntax: 

•  Type checking: 
–  If t1..tn are types, then t is a type 
– And t1..tn are allowed to mention t  
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type t = C1 of t1 | C2 of t2 | … | Cn of tn 



Datatypes: Syntax and semantics 

•  Syntax: 

 
•  Evaluation: 
– For declaration itself, none.  Types aren’t evaluated 
– Building: 

•  Ci v is a value 

•  If e-->v then Ci e --> Ci v!

– Accessing…? 
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type t = C1 of t1 | C2 of t2 | … | Cn of tn 



Match expressions 
•  Syntax 

•  Evaluation: 
– Evaluate e to a value v!
–  If pi is the first pattern to match v, then evaluate  
ei to value vi and return vi 
•  Note:  pattern itself is not evaluated   
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match e with p1 -> e1 | p2 -> e2 | … | pn -> en 



Match expressions 
•  Syntax 

•  Evaluation (cont’d): 
– Pattern matches  value if it “looks like” the value 

–  Pattern Ci(x1,…,xn) matches value Ci(v1,…,vn)  
– Wildcard pattern _ (i.e., underscore) matches any value 

– When evaluating ei, pattern variables are bound to 
corresponding values “inside” v.  More soon… 
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match e with p1 -> e1 | p2 -> e2 | … | pn -> en 



Match expressions 
•  Syntax 

•  Type-checking: 
–  If e, p1..pn have type ta 

and e1..en have type tb 
then entire match expression has type tb 

– Do you see how this generalizes type-checking of if 
expressions?  Hmm… 
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match e with p1 -> e1 | p2 -> e2 | … | pn -> en 



Enhanced pattern syntax 

•  Patterns can nest arbitrarily deep 
–  (Just like expressions) 
–  Easy-to-read, nested patterns can replace hard-to-read, 

nested match expressions 
 

•  Examples: 
–  Pattern a::b::c::d matches all lists with >= 3 

elements 
–  Pattern a::b::c::[] matches all lists with 3 

elements 
–  Pattern ((a,b),(c,d))::e matches all non-empty 

lists of pairs of pairs 
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Useful example: zip/unzip 3 lists 
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let rec zip3 lists =  
   match lists with  
        ([],[],[]) -> [] 
      | (hd1::tl1,hd2::tl2,hd3::tl3) ->  
             (hd1,hd2,hd3)::zip3(tl1,tl2,tl3) 
      | _ -> raise (Failure “List length mismatch”) 
 
let rec unzip3 triples =  
   match triples with  
        [] -> ([],[],[]) 
      | (a,b,c)::tl ->  
          let (l1, l2, l3) = unzip3 tl  
          in (a::l1,b::l2,c::l3)  
           
 
 



Match expressions 
Evaluation:   
Given a pattern p and a value v, decide 
– Does pattern match value? 
–  If so, what variable bindings are introduced? 

Let’s give an evaluation rule for each kind of 
pattern… 
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Precise definition of pattern matching 
•  If p is a variable x, the match succeeds and x is 

bound to v 

•  If p is _, the match succeeds and no bindings are 
introduced 

•  If p is a constant c, the match succeeds if v is c.  No 
bindings are introduced. 
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Precise definition of pattern matching 
•  If p is C, the match succeeds if v is C.  No bindings 

are introduced. 

•  If p is C p1, the match succeeds if v is C v1 (i.e., 
the same constructor) and p1 matches v1.  The 
bindings are the bindings from the sub-match. 
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Precise definition of pattern matching 
•  If p is (p1,…, pn) and v is (v1,…, vn), the match 

succeeds if p1 matches v1, and …, and pn matches vn.  The 
bindings are the union of all bindings from the sub-matches. 
–  The pattern (x1,…,xn)matches the tuple value (v1,…,vn) 

•  If p is {f1=p1; …; fn=pn} and v is {f1=v1; …; 
fn=vn}, the match succeeds if p1 matches v1, and …, and 
pn matches vn.  The bindings are the union of all bindings 
from the sub-matches. 
–  (and fields can be reordered) 
–  The pattern {f1=x1;…;fn=xn}matches the record value 
{f1=v1;…;fn=vn} 
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Match expressions 

•  Syntax 
•  Type checking 
•  Evaluation 

…mission accomplished! 



Are you ready for a mind-altering 
experience? 
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1. If expressions are just matches 

•  if expressions exist only in the surface syntax of the language 
•  Early pass in compiler can actually replace if expression with 
match expression, then compile the match expression 
instead 

 
   becomes… 

   because… 
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match e0 with true -> e1 | false -> e2 

if e0 then e1 else e2 

type bool = false | true 



Syntactic sugar 

•  Syntactic: Can describe the semantics entirely by 
another piece of syntax 

 
•  Sugar: They make the language sweeter J 
•  There are fewer semantics to worry about 

–  Simplify understanding the language 
–  Simplify implementing the language 

 
There are many more examples of syntactic sugar in 
OCaml… 
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Syntactic sugar 

“Syntactic sugar causes  
  cancer of the semicolon.”  
 

 
First recipient of the Turing Award 
for his “influence in the area of advanced programming 
techniques and compiler construction” 
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Alan J. Perlis  
(1922-1990)  
 



2. Options are just datatypes 

•  Options are just a predefined datatype 

– None and Some are constructors 
– ’a means “any type” 
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type ’a option = None | Some of ’a 

let string_of_intopt(x:int option) =  
  match x with  
    None    -> “”  
  | Some(i) -> string_of_int(i) 



3. Lists are just datatypes 
We could have coded up lists ourselves: 
 
 
 
 
 
 
 
 
 
 
But much better to reuse well-known, widely-understood implementation 
OCaml already provides 
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type my_int_list = Nil  
                 | Cons of int * my_int_list 
 
let x = Cons(4,Cons(23,Cons(2008,Nil))) 
 
let rec my_append (xs:my_int_list) (ys:my_int_list) = 
   match xs with 
     Nil-> ys 
  | Cons(x,xs’) -> Cons(x, my_append xs’ ys) 



OCaml effectively does just code up lists itself: 
 
 
 
 
 
Just a bit of syntactic magic in compiler to use 
[], ::, @ instead of Latin-alphabet identifiers 
 
 
 

type ’a list = [] | :: of ’a * ’a list 
 
 
let rec append (xs: ‘a list)(ys: ‘a list) = 
   match xs with 
       []     -> ys 
    | x::xs’ -> x :: (append xs’ ys) 

 

3. Lists are just datatypes 
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We’ve seen ‘a more than once…  What is it really? 



4. Let expressions are pattern matches 

•  The syntax on the LHS of = in a let expression is really a 
pattern 

–   (Variables are just one kind of pattern) 
 

•  Implies it’s possible to do this (e.g.): 

–  Tests for the one variant (cons) and raises an exception if a 
different one is there (nil)–so it works like hd, tl 

– Therefore not a great idiom 
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let p = e 

let [x1;x2] = lst 



5. Function arguments are patterns 

A function argument can also be a pattern 
– Match against the argument in a function call 

Examples: 
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let f p = e 

let sum_triple (x, y, z) = 
    x + y + z 
 
let sum_stooges {larry=x; moe=y; curly=z} = 
    x + y + z 
 



Recall this?  

A function that takes one triple of type int*int*int and 
returns an int that is their sum: 
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A function that takes three int arguments and returns                
an int that is their sum: 

let sum_triple (x, y, z) = 
    x + y + z 

let sum_triple (x, y, z) = 
    x + y + z 

See the difference? (Me neither.) J   
The argument is just a pattern. 



6. Functions take 1 argument 
 
•  What we think of as multi-argument functions are just 

functions taking one tuple argument, implemented 
with a tuple pattern in the function binding 
–  Elegant and flexible language design 

•  Enables cute and useful things you can’t do in Java, e.g.,  
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let rotate_left (x, y, z) = (y, z, x) 
let rotate_right t = rotate_left(rotate_left t) 
 



Is your mind altered? 
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Is your mind altered? 

“A language that doesn't affect the 
way you think about programming 
is not worth knowing.”  

 

–Alan J. Perlis 
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Question #2 

What’s your favorite OCaml feature so far? 
A.  Pattern matching 
B.  Lists 
C.  Higher-order functions 
D.  Datatypes 
E.  I miss Java :( 



Back to alpha… 
Length of a list: 
 
 
 
 
 
 
 
 
 
 
No algorithmic difference!  Would be silly to have to write function for 
every kind of list type… 
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let rec len (xs: int list) = 
   match xs with 
       [] -> 0 
    | _::xs’ -> 1 + len xs’ 

 

let rec len (xs: string list) = 
   match xs with 
       [] -> 0 
    | _::xs’ -> 1 + len xs’ 

 



Type variables to the rescue 

Use type variable to stand in place of an arbitrary type: 

–  Just like we use variables to stand in place of arbitrary values 
–  Creates a polymorphic function (“poly”=many, “morph”=form) 
–  Closely related to generics in Java 
–  Might look like, but is rather less related to, templates in C++  
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let rec len (xs: 'a list) = 
   match xs with 
       [] -> 0 
    | _::xs’ -> 1 + len xs’ 

 



Datatypes: Syntax 

•  Syntax: 

•  Type checking: 
–  If t1..tn are types, then t is a type 
– And t1..tn are allowed to mention t  and ’a 

35 

type ’a t = C1 of t1 | C2 of t2 | … | Cn of tn 



WRAP-UP FOR TODAY 
Please hold still for 1 more minute 



Upcoming events 

•  PS1 is due Thursday 
•  Clarkson office hours this week:  TR 2-4 pm 
 

This is a mind-altering experience. 

THIS IS 3110 


