
Prof. Clarkson
Fall 2014

CS 3110
Lecture 5: Pattern Matching

Today’s music: “Puff, the Magic Dragon” by Peter, Paul & Mary

Review

Features so far: variables, operators, let
expressions, if expressions, functions (higher-order,
anonymous), datatypes, records, lists, options

Today:
•  Pattern matching
•  A mind-altering experience
•  Polymorphic datatypes

Question #1

How much of PS1 have you finished?
A.  None
B.  About 25%
C.  About 50%
D.  About 75%
E.  I’m done!!!

Review
Algebraic datatype we saw last time:

Here’s a card:

•  Type annotation: two_clubs has type suit*rank
•  Wouldn’t it be nice to write something more meaningful (say, card)

instead of suit*rank?
–  Would prevent (e.g.) having to remember whether suit comes first or
rank

4

type suit = Club | Diamond | Heart | Spade
type rank = Jack | Queen | King
 | Ace | Num of int

let two_clubs : suit*rank = (Club, Num 2)

Type synonym

A type synonym is a new kind of declaration

– Creates another name for a type

– The type and the name are interchangeable in every
way

5

type name = t

Why have type synonyms?

•  For now: convenience and style
–  (makes code self-documenting!)

–  Write functions of type (e.g.)
card -> bool

–  Note: okay if REPL says your function has type
 suit * rank -> bool

•  Later: other uses related to modularity

6

type card = suit*rank
let two_clubs : card = (Club, Num 2)

Datatypes: Syntax and semantics

•  Syntax:

•  Type checking:
–  If t1..tn are types, then t is a type
– And t1..tn are allowed to mention t

7

type t = C1 of t1 | C2 of t2 | … | Cn of tn

Datatypes: Syntax and semantics

•  Syntax:

•  Evaluation:
– For declaration itself, none. Types aren’t evaluated
– Building:

•  Ci v is a value

•  If e-->v then Ci e --> Ci v!

– Accessing…?

8

type t = C1 of t1 | C2 of t2 | … | Cn of tn

Match expressions
•  Syntax

•  Evaluation:
– Evaluate e to a value v!
–  If pi is the first pattern to match v, then evaluate
ei to value vi and return vi
•  Note: pattern itself is not evaluated

9

match e with p1 -> e1 | p2 -> e2 | … | pn -> en

Match expressions
•  Syntax

•  Evaluation (cont’d):
– Pattern matches value if it “looks like” the value

–  Pattern Ci(x1,…,xn) matches value Ci(v1,…,vn)
– Wildcard pattern _ (i.e., underscore) matches any value

– When evaluating ei, pattern variables are bound to
corresponding values “inside” v. More soon…

10

match e with p1 -> e1 | p2 -> e2 | … | pn -> en

Match expressions
•  Syntax

•  Type-checking:
–  If e, p1..pn have type ta

and e1..en have type tb
then entire match expression has type tb

– Do you see how this generalizes type-checking of if
expressions? Hmm…

11

match e with p1 -> e1 | p2 -> e2 | … | pn -> en

Enhanced pattern syntax

•  Patterns can nest arbitrarily deep
–  (Just like expressions)
–  Easy-to-read, nested patterns can replace hard-to-read,

nested match expressions

•  Examples:
–  Pattern a::b::c::d matches all lists with >= 3

elements
–  Pattern a::b::c::[] matches all lists with 3

elements
–  Pattern ((a,b),(c,d))::e matches all non-empty

lists of pairs of pairs

12

Useful example: zip/unzip 3 lists

13

let rec zip3 lists =
 match lists with
 ([],[],[]) -> []
 | (hd1::tl1,hd2::tl2,hd3::tl3) ->
 (hd1,hd2,hd3)::zip3(tl1,tl2,tl3)
 | _ -> raise (Failure “List length mismatch”)

let rec unzip3 triples =
 match triples with
 [] -> ([],[],[])
 | (a,b,c)::tl ->
 let (l1, l2, l3) = unzip3 tl
 in (a::l1,b::l2,c::l3)

Match expressions
Evaluation:
Given a pattern p and a value v, decide
– Does pattern match value?
–  If so, what variable bindings are introduced?

Let’s give an evaluation rule for each kind of
pattern…

14

Precise definition of pattern matching
•  If p is a variable x, the match succeeds and x is

bound to v

•  If p is _, the match succeeds and no bindings are
introduced

•  If p is a constant c, the match succeeds if v is c. No
bindings are introduced.

15

Precise definition of pattern matching
•  If p is C, the match succeeds if v is C. No bindings

are introduced.

•  If p is C p1, the match succeeds if v is C v1 (i.e.,
the same constructor) and p1 matches v1. The
bindings are the bindings from the sub-match.

16

Precise definition of pattern matching
•  If p is (p1,…, pn) and v is (v1,…, vn), the match

succeeds if p1 matches v1, and …, and pn matches vn. The
bindings are the union of all bindings from the sub-matches.
–  The pattern (x1,…,xn)matches the tuple value (v1,…,vn)

•  If p is {f1=p1; …; fn=pn} and v is {f1=v1; …;
fn=vn}, the match succeeds if p1 matches v1, and …, and
pn matches vn. The bindings are the union of all bindings
from the sub-matches.
–  (and fields can be reordered)
–  The pattern {f1=x1;…;fn=xn}matches the record value
{f1=v1;…;fn=vn}

17

Match expressions

•  Syntax
•  Type checking
•  Evaluation

…mission accomplished!

Are you ready for a mind-altering
experience?

19

1. If expressions are just matches

•  if expressions exist only in the surface syntax of the language
•  Early pass in compiler can actually replace if expression with
match expression, then compile the match expression
instead

 becomes…

 because…

20

match e0 with true -> e1 | false -> e2

if e0 then e1 else e2

type bool = false | true

Syntactic sugar

•  Syntactic: Can describe the semantics entirely by
another piece of syntax

•  Sugar: They make the language sweeter J
•  There are fewer semantics to worry about

–  Simplify understanding the language
–  Simplify implementing the language

There are many more examples of syntactic sugar in
OCaml…

21

Syntactic sugar

“Syntactic sugar causes
 cancer of the semicolon.”

First recipient of the Turing Award
for his “influence in the area of advanced programming
techniques and compiler construction”

22

Alan J. Perlis
(1922-1990)

2. Options are just datatypes

•  Options are just a predefined datatype

– None and Some are constructors
– ’a means “any type”

23

type ’a option = None | Some of ’a

let string_of_intopt(x:int option) =
 match x with
 None -> “”
 | Some(i) -> string_of_int(i)

3. Lists are just datatypes
We could have coded up lists ourselves:

But much better to reuse well-known, widely-understood implementation
OCaml already provides

24

type my_int_list = Nil
 | Cons of int * my_int_list

let x = Cons(4,Cons(23,Cons(2008,Nil)))

let rec my_append (xs:my_int_list) (ys:my_int_list) =
 match xs with
 Nil-> ys
 | Cons(x,xs’) -> Cons(x, my_append xs’ ys)

OCaml effectively does just code up lists itself:

Just a bit of syntactic magic in compiler to use
[], ::, @ instead of Latin-alphabet identifiers

type ’a list = [] | :: of ’a * ’a list

let rec append (xs: ‘a list)(ys: ‘a list) =
 match xs with
 [] -> ys
 | x::xs’ -> x :: (append xs’ ys)

3. Lists are just datatypes

25

We’ve seen ‘a more than once… What is it really?

4. Let expressions are pattern matches

•  The syntax on the LHS of = in a let expression is really a
pattern

–  (Variables are just one kind of pattern)

•  Implies it’s possible to do this (e.g.):

–  Tests for the one variant (cons) and raises an exception if a
different one is there (nil)–so it works like hd, tl

– Therefore not a great idiom

26

let p = e

let [x1;x2] = lst

5. Function arguments are patterns

A function argument can also be a pattern
– Match against the argument in a function call

Examples:

27

let f p = e

let sum_triple (x, y, z) =
 x + y + z

let sum_stooges {larry=x; moe=y; curly=z} =
 x + y + z

Recall this?

A function that takes one triple of type int*int*int and
returns an int that is their sum:

28

A function that takes three int arguments and returns
an int that is their sum:

let sum_triple (x, y, z) =
 x + y + z

let sum_triple (x, y, z) =
 x + y + z

See the difference? (Me neither.) J
The argument is just a pattern.

6. Functions take 1 argument

•  What we think of as multi-argument functions are just

functions taking one tuple argument, implemented
with a tuple pattern in the function binding
–  Elegant and flexible language design

•  Enables cute and useful things you can’t do in Java, e.g.,

29

let rotate_left (x, y, z) = (y, z, x)
let rotate_right t = rotate_left(rotate_left t)

Is your mind altered?

30

Is your mind altered?

“A language that doesn't affect the
way you think about programming
is not worth knowing.”

–Alan J. Perlis

31

Question #2

What’s your favorite OCaml feature so far?
A.  Pattern matching
B.  Lists
C.  Higher-order functions
D.  Datatypes
E.  I miss Java :(

Back to alpha…
Length of a list:

No algorithmic difference! Would be silly to have to write function for
every kind of list type…

33

let rec len (xs: int list) =
 match xs with
 [] -> 0
 | _::xs’ -> 1 + len xs’

let rec len (xs: string list) =
 match xs with
 [] -> 0
 | _::xs’ -> 1 + len xs’

Type variables to the rescue

Use type variable to stand in place of an arbitrary type:

–  Just like we use variables to stand in place of arbitrary values
–  Creates a polymorphic function (“poly”=many, “morph”=form)
–  Closely related to generics in Java
–  Might look like, but is rather less related to, templates in C++

34

let rec len (xs: 'a list) =
 match xs with
 [] -> 0
 | _::xs’ -> 1 + len xs’

Datatypes: Syntax

•  Syntax:

•  Type checking:
–  If t1..tn are types, then t is a type
– And t1..tn are allowed to mention t and ’a

35

type ’a t = C1 of t1 | C2 of t2 | … | Cn of tn

WRAP-UP FOR TODAY
Please hold still for 1 more minute

Upcoming events

•  PS1 is due Thursday
•  Clarkson office hours this week: TR 2-4 pm

This is a mind-altering experience.

THIS IS 3110

