
Prof. Clarkson
Fall 2014

CS 3110
Lecture 4: Lists and more data

Today’s music: “Everything is AWESOME!!!” from The Lego Movie

Review

Features so far: variables, operators, let
expressions, if expressions, functions, datatypes,
records

Today:
•  Review tuples
•  Lists, options, algebraic datatypes

Question #1

A tuple contains…

A.  A fixed number of components all of which must have

the same type
B.  Exactly two components which may have different types
C.  A fixed number of components each of which may have

a different type
D.  Exactly two components which must have the same type
E.  I forgot to study tuples

Question #1

A tuple contains…

A.  A fixed number of components all of which must have

the same type
B.  Exactly two components which may have different types
C.  A fixed number of components each of which may

have a different type
D.  Exactly two components which must have the same type
E.  I forgot to study tuples

Question #2

To access the first component of a pair, I can use…
A.  The fst projection function
B.  Pattern matching with a let expression
C.  The unit expression
D.  A and B
E.  A and C

Question #2

To access the first component of a pair, I can use…
A.  The fst projection function
B.  Pattern matching with a let expression
C.  The unit expression
D.  A and B
E.  A and C

Question #3

What is the type of this expression?
let (x,y) = snd(“zar”,(“doz”,42))
in (42,y)

A.  {x:string; y:int}
B.  int*int
C.  string*int
D.  int*string
E.  string*(string*int)

Question #3

What is the type of this expression?
let (x,y) = snd(“zar”,(“doz”,42))
in (42,y)

A.  {x:string; y:int}
B.  int*int
C.  string*int
D.  int*string
E.  string*(string*int)

Hmm…

Q: What is the type of (1,2,3)?
A: int*int*int

Q: What is the type of sum_triple in:

A: int*int*int->int

let sum_triple ((x:int),(y:int),(z:int)):int =
 x + y + z

Hmm…

A function that takes one triple of type int*int*int and
returns an int that is their sum:

10

A function that takes three int arguments and returns
an int that is their sum:

let sum_triple (x, y, z) =
 x + y + z

let sum_triple (x, y, z) =
 x + y + z

See the difference? (Me neither.) J More next week…

PS1 is out today

•  Due in 7 days: Thursday, Sept. 11, 11:59 pm
•  Covers everything through today
–  In lecture and in notes
–  A couple very small things to learn on your own:

•  E.g., (+) is prefix version of + operator
–  Might (not) find some library modules useful (List, Char,

…)
•  Must be done with a partner
–  Find a partner on Piazza
–  Form a partnership on CMS well before due day
–  Right way vs. wrong way…
–  Everything is AWESOME when you’re part of a team!!!

Problem set grading
•  Automated grading for correctness

–  Critical for you to program to the specification we give you
–  No-compile grace period: we notify you Thursday night, you get till Saturday 11:59

pm to fix it
–  If you submit a small patch (2-3 lines) that gets code to compile, just a minor

penalty
–  If your code still can’t be compiled, you get a zero

•  Manual grading for written problems, code style
•  You get two late passes for use in semester

–  Automatic 48-hour extension: assignment becomes due Saturday at 11:59 pm
–  No-compile grace period does not apply
–  Both partners must relinquish a pass
–  To use: email Course Administrator

•  In case of true emergency (medical, family) contact Instructor ASAP

LISTS…ARE AWESOME!!!

Lists

•  So far, the type of a variable commits to a particular
“amount” of data
–  e.g., pair has two components, exactly

•  In contrast, a list can have any number of elements

•  But unlike tuples, all elements have the same type

Need ways to build lists and access the pieces…

Building Lists
Syntax:
•  A list of values is a value; elements separated by semi-colons:

•  The empty list is a value:

•  Prepend an element to beginning of list:

Evaluation:
•  If e1-->v1 and…and en-->vn

then [e1;…;en]-->[v1;…vn]
•  If e1-->v and e2-->[v1,…,vn]

then e1::e2-->[v,v1,…,vn]
•  v is the head of new list; rest is tail

[] (* :: pronounced “nil” *)

[v1;v2;…;vn]

e1::e2 (* :: pronounced “cons” *)

New types:
For any type t, the type t list describes lists where all elements have type t

–  [1;2;3] : int list
–  [true] : bool list
–  [[1+1;2-3];[3*7]] : int list list
–  [(1,2);(2,4)] : (int * int) list
–  [([0;1],2);([3;4],5)] : (int list * int) list

Caution: semi-colons in lists, commas in tuples

Cons:
If e1 : t and e2 : t list then e1::e2 : t list
With parens for clarity:
If e1 : t and e2 : (t list) then (e1::e2) : (t list)

Nil:
[]:t list for any type t

–  OCaml uses type ‘a list to indicate this (“quote a” or “alpha”)

Type-checking list builders

Accessing lists

A list is either:
– nil
– or a head “cons-ed” onto a tail

Use pattern matching to access list in one of those
ways:

let empty lst =
 match lst with
 [] -> true
 | h::t -> false

Your brain is probably exploding with AWESOME questions about pattern matching now…

Example list functions
let rec sum_list (lst : int list) : int =
 match lst with
 [] -> 0
 | h::t -> h + sum_list(t)

let rec length (lst : int list) : int =
 match lst with
 [] -> 0
 | x::xs -> 1 + length(xs)

let rec append ((lst1:’a list),(lst2:’a list))
 : ’a list =
 match lst1 with
 [] -> lst2
 | h::t -> h::append(t,lst2)
(* append is available as built-in operator @ *)

Lists are immutable

•  No way to mutate an element of a list
•  Instead, build up new lists out of old
– e.g., append

Question #4

What is the type of 31::[10]?
A.  int
B.  int list
C.  int*(int list)
D.  (int*int) list
E.  Not well-typed

Question #4

What is the type of 31::[10]?
A.  int
B.  int list
C.  int*(int list)
D.  (int*int) list
E.  Not well-typed

Question #5

To what value does the above expression evaluate?
A.  “zar”
B.  “doz”
C.  “kitteh”
D.  []
E.  h

match [“zar”;”doz”] with
 [] -> “kitteh”
| h::t -> h

Question #5

To what value does the above expression evaluate?
A.  “zar”
B.  “doz”
C.  “kitteh”
D.  []
E.  h

match [“zar”;”doz”] with
 [] -> “kitteh”
| h::t -> h

Recursion!

Functions over lists are usually recursive: only way to “get
to” all the elements

•  What should the answer be for the empty list?
•  What should the answer be for a non-empty list?
–  Typically in terms of the answer for the tail of the list

•  Two library functions that return head and tail
– List.hd, List.tl

•  They are usually poor style when directly
applied to a list
– Why? Because they throw exceptions; you can easily

write buggy code
– Whereas pattern matching guarantees no exceptions

when destructing list; it’s hard to write buggy code!

Accessing lists, with poor style

OPTIONS

What is max of empty list?

let max (x, y) =
 if x>y then x else y

let rec max_list (lst : int list) : int =
 match lst with
 [] -> ???
 | h::t -> max(h,max_list(t))

negative infinity would be a reasonable choice…
or could raise an exception…
or might return a null Integer in Java…
but OCaml gives us another AWESOME option!

Options
Options:
•  t option is a type for any type t
–  (much like t list is a type for any type t)

Building and Type Checking and Evaluation:
•  None has type ‘a option
–  much like [] has type ‘a list
–  None is a value

•  Some e : t option if e:t
–  much like e::[] has type t list if e:t
–  If e-->v then Some e-->Some v

Accessing:
 28

match e with
 None -> ...
 | Some x -> ...

Again: What is max of empty list?

let max (x, y) =
 if x>y then x else y

let rec max_list (lst : int list) : int option =
 match lst with
 [] -> None
 | h::t -> match max_list(t) with
 None -> Some h
 | Some x -> Some (max(h,x))

Very stylish!
…no possibility of exceptions
…no chance of programmer ignoring a “null return”

ALGEBRAIC DATATYPES

Recall: datatype for days

type day = Sun | Mon | Tue | Wed
 | Thu | Fri | Sat

One-of type
Each “branch” is a constructor

But wait, there’s more…

Algebraic datatypes
A strange (?) and totally AWESOME (!) way to make one-
of types:

type mytype = TwoInts of int * int
 | Str of string
 | Pizza

•  Each constructor can carry data along with it
•  A constructor behaves like a function that makes values of the new type (or

is a value of the new type):
–  TwoInts : int * int -> mytype
–  Str : string -> mytype
–  Pizza : mytype

Algebraic datatypes

•  Any value of type mytype is made from one of the
constructors

•  The value contains:
−  A “tag” for “which constructor” (e.g., TwoInts)
−  The corresponding data (e.g., (7,9))

−  Examples of evaluation:
−  TwoInts(3+4,5+4)-->TwoInts(7,9)
−  Str(if true then “hi” else “bye”)

-->Str(“hi”)
−  Pizza is a value

type mytype = TwoInts of int * int
 | Str of string
 | Pizza

Algebraic datatypes

So we know how to build datatype values; need to
access them

There are two aspects to accessing a datatype value
1.  Check what variant it is (what constructor

made it)
2.  Extract the data (if that variant carries any)

Pattern matching alg. datatypes
OCaml combines the two aspects of accessing an
algebraic datatype into (once again) pattern matching:

•  One branch per variant
•  Each branch
–  extracts the carried data and
–  binds data to variables local to that branch

let f (x:mytype) : int =
 match x with
 Pizza -> 3
 | TwoInts(i1,i2) -> i1+i2
 | Str s -> String.length s

Patterns for alg. datatypes
Syntax:

For now, each pattern is a constructor name followed by the right
number of variables (i.e., C or C x or C(x,y) or …)

–  Syntactically patterns might look like expressions
–  But patterns are not expressions

•  OCaml does not evaluate patterns
•  OCaml does determine whether result of e0 matches patterns

Type checking and evaluation will take us till next week…

 match e0 with
 p1 -> e1
 | p2 -> e2
 | ...
 | pn -> en

Why pattern matching is AWESOME

1.  You can’t forget a case
(inexhaustive pattern-match warning)

2.  You can’t duplicate a case
(unused match case warning)

3.  You can’t get an exception
from forgetting to test the variant
(e.g., hd [])

4.  Pattern matching leads to elegant, concise,
beautiful code

(* Every student either has an id number
 * or (temporarily) is identified by name. *)
type student_id =
 IdNum of int
| FullName of string

Useful datatypes

That last datatype was silly…
•  Enumerations, including containing other data

•  Alternative ways of representing data

type suit = Club | Diamond | Heart | Spade
type rank = Jack | Queen | King
 | Ace | Num of int

WRAP-UP FOR TODAY
Please hold still for 1 more minute

Registration

•  If you put yourself on the Waiting Set, you
should have received an email

You,	
 Robot	

The	
 Day	
 the	
 Earth	

Stood	
 S3ll	
 (1951)	

Thursday,	
 Sep	
 4	
 	

7:00	
 pm	

Willard	
 Straight	
 Theatre	

A	
 #mely	
 film	
 series*	
 that	
 is	
 guaranteed	
 to	
 get	
 you	
 thinking	
 about	
 the	
 	

growing	
 autonomy	
 of	
 machines.	
 	

	

	
 	

	
 	

	

In	
 honor	
 of	
 the	
 50th	
 Anniversary	
 of	
 the	
 	
 Department	
 of	
 Computer	
 Science,	
 Cornell	
 Cinema	
 	
 Presents	

Introduced	
 by	
 Professor	
 Charles	
 Van	
 Loan	
 (CS)	

*The	
 Day	
 the	
 Earth	
 Stood	
 S#ll	
 	
 /	
 2001:	
 A	
 Space	
 Odyssey	
 /	
 Robocop	
 /	
 Ghost	
 in	
 the	
 Shell	
 /	
 Metropolis	
 /	
 Robot	
 and	
 Frank	

“Gort,	
 Klaatu	
 barada	
 nikto.”	

Upcoming events

•  PS1 is out today, due one week from today
•  Clarkson office hours this week: TR 1:30-2:30
•  TA office hours and consulting start tonight;

times and places on course website

Everything is AWESOME!!!

THIS IS 3110

