
Prof. Clarkson
Fall 2014

CS 3110
Lecture 3: Functions and data

Today’s music: Function by E-40 (Clean remix)

Review

Last week:
•  Intro to syntax and semantics of OCaml

Today:
•  Functions: the most important part of

functional programming

•  Data: datatypes, records, tuples

Function declaration
Functions: the most important building block in the whole course

–  Like Java methods, have arguments and result
–  But no classes, this, return, etc.

Example function declaration:

(* requires: y>=0 *)
(* returns: x to the power of y *)
let rec pow ((x : int), (y : int)) : int =
 if y=0 then 1
 else x * pow(x,y-1)

Note: “rec” is required because the body includes a recursive function call:
pow(x,y-1)

Questions

If we want to understand functions in OCaml, what
questions do we need to ask?

Syntax?
Type checking?

Evaluation?

Function declaration: 3 questions
•  Syntax: (for now)
let rec f ((x1 : t1), … , (xn : tn)):t = e

•  Evaluation:
– No evaluation to do, yet; just declaring the function

•  Type-checking:
– Conclude that f : (t1 * … * tn) -> t

if e:t under assumptions:
•  x1:t1, …, xn:tn (arguments with their types)
•  f:(t1 * … * tn) -> t (for recursion)

Function calls

A new kind of expression: 3 questions

Syntax: (for now)
 e0 (e1,…,en)

–  Parentheses optional if there is exactly one argument
–  Space before left paren is optional

Type-checking:
 If:

–  e0 has some type (t1 * … * tn) -> t
–  e1 has type t1, …, en has type tn
Then:
–  e0 (e1,…,en) has type t
Example: pow(x,y-1) in previous example has type int

Function calls, continued

Evaluation:

1.  Evaluate e0 to a function
let rec x0 ((x1 : t1), … , (xn : tn)) = e
‒  Since call type-checked, result is guaranteed to be a function

2.  Evaluate arguments to values v1, …, vn
3.  Substitute vi for xi in e -- again, TRICKY --

producing expression e’
4.  Evaluate e’ to a value v, which is result

e0 (e1,…,en)

Example functions

let rec pow ((x : int), (y : int)) : int =
 if y=0 then 1
 else x * pow(x,y-1)

let cube (x : int) : int =
 pow (x,3)

let sixtyfour = cube 4

let fortytwo = pow(2,4) + pow(4,2) + cube(2) + 2

 Longer examples in the notes—study them!

Question #1

pow(3,2)
 --> ???

(* requires: y>=0 *)
(* returns: x to the power of y *)
let rec pow ((x : int), (y : int)) : int =
 if y=0 then 1
 else x * pow(x,y-1)

Question #1

pow(3,2)
 --> ???
A.  9
B.  if y=0 then 1 else x*pow(x,y-1)
C.  2*pow(3,2)
D.  if 2=0 then 1 else 3*pow(3,2-1)

(* requires: y>=0 *)
(* returns: x to the power of y *)
let rec pow ((x : int), (y : int)) : int =
 if y=0 then 1
 else x * pow(x,y-1)

Question #1

pow(3,2)
 --> ???
A.  9
B.  if y=0 then 1 else x*pow(x,y-1)
C.  2*pow(3,2)
D.  if 2=0 then 1 else 3*pow(3,2-1)

(* requires: y>=0 *)
(* returns: x to the power of y *)
let rec pow ((x : int), (y : int)) : int =
 if y=0 then 1
 else x * pow(x,y-1)

Question #1

pow(3,2)
 --> if 2=0 then 1 else 3 * pow(3,2-1)

(* requires: y>=0 *)
(* returns: x to the power of y *)
let rec pow ((x : int), (y : int)) : int =
 if y=0 then 1
 else x * pow(x,y-1)

Question #2

pow(3,2)
 --> if 2=0 then 1 else 3 * pow(3,2-1)
 --> ???

(* requires: y>=0 *)
(* returns: x to the power of y *)
let rec pow ((x : int), (y : int)) : int =
 if y=0 then 1
 else x * pow(x,y-1)

Question #2

pow(3,2)
 --> if 2=0 then 1 else 3 * pow(3,2-1)
 --> ???
A.  false
B.  if false then 1 else 3*pow(3,2-1)
C.  3*pow(3,2-1)
D.  3*3

(* requires: y>=0 *)
(* returns: x to the power of y *)
let rec pow ((x : int), (y : int)) : int =
 if y=0 then 1
 else x * pow(x,y-1)

Question #2

pow(3,2)
 --> if 2=0 then 1 else 3 * pow(3,2-1)
 --> ???
A.  false
B.  if false then 1 else 3*pow(3,2-1)
C.  3*pow(3,2-1)
D.  3*3

(* requires: y>=0 *)
(* returns: x to the power of y *)
let rec pow ((x : int), (y : int)) : int =
 if y=0 then 1
 else x * pow(x,y-1)

Question #2

pow(3,2)
 --> if 2=0 then 1 else 3 * pow(3,2-1)
 --> if false then 1 else 3*pow(3,2-1)

(* requires: y>=0 *)
(* returns: x to the power of y *)
let rec pow ((x : int), (y : int)) : int =
 if y=0 then 1
 else x * pow(x,y-1)

Example function evaluation

pow(3,2)
 --> if 2=0 then 1 else 3 * pow(3,2-1)
 --> if false then 1 else 3 * pow(3,2-1)
 --> 3 * pow(3,2-1)
 --> 3 * pow(3,1)
 --> 3 * (if 1=0 then 1 else 3 * pow(3,1-1))
 --> 3 * (if false then 1 else 3 * pow(3,1-1))
 --> 3 * (3 * pow(3,1-1))
 --> 3 * (3 * pow(3,0))
 --> 3 * (3 * (if 0=0 then 1 else 3 * pow(3,0-1)))
 --> 3 * (3 * (if true then 1 else 3 * pow(3,0-1)))
 --> 3 * (3 * 1)
 --> 3 * 3
 --> 9

(* requires: y>=0 *)
(* returns: x to the power of y *)
let rec pow ((x : int), (y : int)) : int =
 if y=0 then 1
 else x * pow(x,y-1)

Alternative function syntax

let abs (x : int) : int =
 if x<0 then –x else x

let abs : int -> int =
 function x -> if x<0 then –x else x

let abs : int -> int =
 fun x -> if x<0 then –x else x

All three are equivalent:

(and you could leave out the types, too)

Omitting argument types

let rec pow ((x : int), (y : int)) : int =
 if y=0 then 1
 else x * pow(x,y-1)

let rec pow’ (x , y) : int =
 if y=0 then 1
 else x * pow(x,y-1)

let cube (x : int) : int =
 pow (x,3)

let cube’ x : int =
 pow (x,3)

When argument type omitted, so are extra parens:

Some gotchas

Three common “gotchas”:

•  The use of * in type syntax is not multiplication
–  Example: int * int -> int
–  In expressions, * is multiplication: x * pow(x,y-1)

•  Order matters: cannot refer to later function
bindings from earlier
–  So helper functions must come before their uses
– Need and construct for mutual recursion

•  Inscrutable error messages if you mess up function-
argument syntax

Function specifications

Specification: contract between function and rest
of the code about how function will behave
 (* requires: precondition *)

(* returns: postcondition *)
let f(x) = ...

Function specifications

Postcondition: Predicate that is guaranteed to hold when
function returns

•  Responsibility: Function must ensure that
postcondition holds

•  Function names usually give a clue as to
postcondition

(* requires: ... *)
(* returns: the lowercase character
 corresponding to c *)
let lowercase (c : char) : char = ...

Function specifications

Precondition: Predicate that is assumed to hold
when function is called
– Responsibility: Programmer who calls function must

ensure that precondition holds

(* requires: c is an uppercase letter *)
(* returns: the lowercase character
 corresponding to c *)
let lowercase (c : char) : char = ...

•  If precondition doesn’t hold, function is allowed to behave arbitrarily
•  Robust implementations try to do something sane though

•  e.g., check precondition and immediately fail if it doesn’t hold
•  If function has no particular precondition, omit requires comment

Question #3

Given this code, which are permissible behaviors for
lowercase(‘?’)?

A.  It can throw an exception
B.  Return‘?’
C.  Return “zardoz”
D.  A and B
E.  A, B, and C

(* requires: c is an uppercase letter *)
(* returns: the lowercase character
 corresponding to c *)
let lowercase (c : char) : char = …

Question #3

Given this code, which are permissible behaviors for
lowercase(‘?’)?

A.  It can throw an exception
B.  Return‘?’
C.  Return “zardoz”
D.  A and B
E.  A, B, and C

(* requires: c is an uppercase letter *)
(* returns: the lowercase character
 corresponding to c *)
let lowercase (c : char) : char = …

FUNCTIONS…DATA

Two new kinds of data

•  Datatypes (one-of types)
•  Records, tuples (each-of types)

Datatype declaration

•  New sort of declaration (variable declaration,
function declaration): type declaration

– Creates a one-of type named mybool
– Creates two constructors named Mytrue and
Myfalse
•  Those are also values of type mybool

•  In fact, that’s effectively how Booleans are defined
in OCaml:

type mybool = Myfalse | Mytrue

type bool = false | true

Datatype for Days

(* similar to an enum in Java or C *)

type day = Sun | Mon | Tue | Wed
 | Thu | Fri | Sat

(* returns: the day of the week for d *)
let day_to_int (d : day) =
 if d=Sun then 1
 else if d=Mon then 2
 else if d=Tue then 3
 else if d=Wed then 4
 else if d=Thu then 5
 else if d=Fri then 6
 else (* d=Sat *) 7

But there’s a much more idiomatic way of expressing this in OCaml…

Datatype for Days

let day_to_int (d : day) =
 match d with
 Sun -> 1
 | Mon -> 2
 | Tue -> 3
 | Wed -> 4
 | Thu -> 5
 | Fri -> 6
 | Sat -> 7

Pattern matching: more beautiful idiom than nested if expressions

These	
 are	
 pa)erns	

Datatype semantics

•  We’ve seen syntax for datatype declarations,
pattern matching

•  What about type checking, evaluation?
…hold that thought!

Record declaration

•  Also declared with type declaration:

– Creates a each-of type named time

•  To build a record:

– order of fields doesn’t matter; could write

•  To access fields of record variable t:

type time = {hour: int; min: int; ampm: string}

 {hour=10; min=10; ampm=“am”}

 {min=10; ampm=“am”; hour=10}

 t.min

Record expressions

•  Syntax: {f1 = e1; …; fn = en}

•  Evaluation:
–  If e1--> v1, and e2--> v2, and … en--> vn
–  Then {f1 = e1; …; fn = en}--> {f1 = v1, …, fn
= vn}

–  Result is a record value

•  Type-checking:
–  If e1 : t1 and e2 : t2 and … en : tn,
–  and if t is a declared type of the form {f1:t1, …, fn:tn}
–  then {f1 = e1; …; fn = en}: t

Record field access

•  Syntax: e.f

•  Evaluation:
–  If e--> {f = v, …}
– Then e.f-->v

•  Type-checking:
–  If e : t1
–  and if t1 is a declared type of the form {f:t2, …}
–  then e.f : t2

Datatypes vs. records

Declare Build/
construct

Access/
destruct

Datatype type Constructor
name

Pattern
matching with
match

Record type Record
expression
with {…}

Field selection
with dot
operator .

Question 4

Which of the following would be better represented
with records rather than datatypes?
A.  Coins, which can be pennies, nickels, dimes, or

quarters
B.  Students, who have names and NetIDs
C.  A plated dessert, which has a sauce, a creamy

component, and a crunchy component
D.  A and C
E.  B and C

Question 4

Which of the following would be better represented
with records rather than datatypes?
A.  Coins, which can be pennies, nickels, dimes, or

quarters
B.  Students, who have names and NetIDs
C.  A plated dessert, which has a sauce, a creamy

component, and a crunchy component
D.  A and C
E.  B and C

Your turn!

•  Part of your development as a programmer is
learning new language features on your own

•  Here’s your chance to practice:
– Learn pairs, tuples, and unit

– The remaining slides will help you
– We’ll start the next lecture with some clicker

questions about them!

By name vs. by position
•  Fields of record are identified by name

–  order we write fields in expression is irrelevant

•  Opposite choice: identify by position
–  e.g., “Would the student named NN. step forward?”

vs. “Would the student in seat n step forward?”

•  You’re accustomed to both:
–  Java object fields accessed by name
–  Java method arguments passed by position

(but accessed in method body by name)

•  OCaml has something you might not have seen:
–  A kind of data accessed by position

Pairs

A pair of data: two pieces of data glued together
e.g.,
•  (1,2)
•  (true, “Hello”)
•  (“cs”, 3110)

Note: looks a lot like the arguments passed to a 2-argument
function

We need a way to build pairs and a way to access the
pieces

Pairs: building
•  Syntax: (e1,e2)

•  Evaluation:
–  If e1-->v1 and e2--> v2
–  Then (e1,e2)--> (v1,v2)
–  A pair of values is itself a value

•  Type-checking:
–  If e1:t1 and e2:t2,
–  then (e1,e2):t1*t2
–  A new kind of type, the pair type
–  (Though we’ve seen * before in function types…)

Pairs: accessing

•  Syntax: fst e and snd e
–  Projection functions

•  Evaluation:
–  If e-->(v1,v2)
–  then fst e --> v1
–  and snd e --> v2

•  Type-checking:
–  If e: ta*tb,
–  then fst e has type ta
–  and snd e has type tb

Tuples

Actually, you can have tuples with more than two parts
–  A new feature: a generalization of pairs
–  Syntax, semantics are straightforward, except…

•  (e1,e2,…,en)
•  t1 * t2 * … * tn
•  fst e, snd e, ???

Instead of generalizing projection functions,
use pattern matching…

Pattern-matching tuples

•  (x, y, z) is a pattern
– because it’s on the LHS of equals in let

•  Evaluation (intuitively):
– Value on RHS of equals is “matched” against pattern

– Each variable in pattern is bound to “matching” part
of value

44

let sum_triple (triple:int*int*int) =
 let (x, y, z) = triple
 in x + y + z

Pattern-matching records

The same syntax works for records:

45

type stooges = {larry:int; moe:int; curly:int}

let sum_stooges (s:stooges) =
 let {larry=x; moe=y; curly=z} = s
 in x + y + z

By name vs. by position, again

•  Little difference between (4,7,9) and
{f=4;g=7;h=9}
– Tuples a little shorter

– Records a little easier to remember “what is where”
•  Names are self-documenting

– Generally a matter of taste, but for many (4? 8? 12?)
fields, a record is usually a better choice

Datatypes vs. records vs. tuples

Declare Build/construct Access/destruct

Datatype type Constructor name Pattern matching with match

Record type Record expression
with {…}

Pattern matching with let
OR field selection with dot operator .

Tuple N/A Tuple expression
with (…)

Pattern matching with let
OR fst or snd

Unit

•  Can actually have a tuple () with no
components whatsoever
– Think of it as a degenerate tuple

– Or, like a Boolean that can only have one value

•  “Unit” is
– a value written ()
– and a type written unit

•  Might seem dumb now; will be useful later!

WRAP-UP FOR TODAY
Please hold still for 1 more minute

Registration

If you (still) want in:
– Keep attending and doing problem sets
– Email Course Administrator with your full name and

NetID by the end of today
– You will be placed in “Waiting Set”. NO PROMISES.
– Tomorrow, I begin working through the Waiting Set

Upcoming events

•  PS 0 is out now, PS1 comes out Thursday
•  No recitations on Tuesday (today), there are

recitations Wednesday and Thursday
•  Clarkson office hours this week: TR 1:30-2:30
•  TA office hours and consulting start soon;

times and places TBA

We trynna function.

THIS IS 3110

