CS 3110

Lecture 22: Mechanized Logic

Prof. Clarkson Fall 2014

Today's music: "Mr. Roboto" by Styx

The problem's plain to see: too much technology.

Machines to save our lives. Machines dehumanize.

Review

Current topic:

- How to reason about correctness of code
- Started with informal arguments
- Developed formal logic

Today:

A proof assistant called Coq

Question #1

How much of PS5 have you finished?

- A. None
- B. About 25%
- C. About 50%
- D. About 75%
- E. I'm done!!!

Review: Proof rules of IPC, part 1

Rule name	Rule
/\ intro	if \mathbf{F} - $\mathbf{f1}$ and \mathbf{F} - $\mathbf{f2}$ then \mathbf{F} - $\mathbf{f1}$ /\ $\mathbf{f2}$
/\ elim L	if F - f1 /\ f2 then F - f1
∕\ elim R	if F - f1 /\ f2 then F - f2
=> elim	if $\mathbf{F} \mid -\mathbf{f}$ and $\mathbf{F} \mid -\mathbf{f} => \mathbf{g}$ then $\mathbf{F} \mid -\mathbf{g}$
=> intro	if F, f - g then F - f => g
assump	f - f
weak	if F - f then F,g - f
set assump	F,f - f

Review: Proof rules of IPC, part 2

Rule name	Rule
V intro L	if F - f1 then F - f1 \/ f2
∨ intro R	if F - f 2 then F - f 1 \/ f 2
∨ elim	if $F \mid -f1 \mid /f2$ and $F \mid -f1 => g$ and $F \mid -f2 => g$ then $F \mid -g$
true intro	F - true
false elim	if F - false then F - f
~ intro	if F - f => false then F - ~f
~ elim	if F - ~f then F - f => false

Review: Proof rules of IQC

Rule name	Rule
	All rules of IPC
forall intro	<pre>if F - f(x) and x not in FV(F) then F - forall x, f(x)</pre>
forall elim	if F - forall x, f(x) then F - f(t)
exists intro	if $F \mid -f(t)$ then $F \mid -exists x$, $f(x)$
exists elim	if $\mathbf{F} \mid - \mathbf{exists} \ \mathbf{x}$, $\mathbf{f}(\mathbf{x})$ and $\mathbf{F} \mid - \mathbf{f}(\mathbf{x}) => \mathbf{g}$ and \mathbf{x} not in $FV(\mathbf{F},\mathbf{g})$ then $\mathbf{F} \mid - \mathbf{g}$

Theories

- IQC reaches its full power when augmented with theories
- Collections of
 - names of relations and functions, and
 - new proof rules for those

Theory of equality

- Relation: equals (t1, t2)
 - normally written t1=t2
- Proof rules:
 - reflexivity: t=t
 - symmetry: if t1=t2 then t2=t1
 - transitivity: if t1=t2 and t2=t3 then t1=t3
 - eq-fn: if t1=u1 and...and tn=un then fn(t1,...,tn) = fn(u1,...,un)
 - eq-rel: if t1=u1 and...and tn=un then R(t1,...,tn) = R(u1,...,un)

Theory of rings

- Ring: mathematical structure that abstracts addition and multiplication
 - see Math 4320
- Relies on theory of equality
- Functions:
 - -plus(t1, t2) and mult(t1, t2) and neg(t)
 - written t1+t2 and t1*t2 and -t
 - zero and one
 - written 0 and 1

Theory of rings

```
    Proof rules (all are axioms):

  - forall a b c, (a+b)+c = a+(b+c)
  - forall a b, a+b = b+a
  - forall a, 0+a=a
  - forall a, a + (-a) = 0
  - forall a b c, a*(b+c) = (a*b)+(a*c)
  - forall a b c, (b+c)*a = (b*a)+(c*a)
  - forall a b c, (a*b)*c = a*(b*c)
  - forall a b, a*b = b*a
  - forall a, 1*a = a
Syntactic sugar:
  forall a b, f
  means forall a, (forall b, f)
```

Prelim 2

- One week from today
- Covers everything from Oct 2 through Nov 12 (inclusive)
 - People with Thursday recitations, note that today's recitation is included
- Sample prelim posted on Piazza
- Review session in recitation day before prelim
- Cancel lecture on day of prelim
- You can take prelim at your choice of 5:30-7:00 pm or 7:30-9:00 pm; no need to reserve in advance
- Three rooms, will be assigned by netid next week
- Closed book
 - But you may have one page of notes
 - − 8.5x11" two-sided ©

Why formal logic?

- Humans make mistakes in writing proofs
- Humans make mistakes in checking proofs
- Formal logic:
 - Reduces proof to symbolic manipulation
 - Maybe a machine could check that manipulation
- Analogy:
 - Compiler type checks program
 - Proof checker uses proof rules we've given to check proof

Mechanized proof

- Automated theorem provers
 - You give tool a theorem
 - Tools finds a proof or a counterexample
 - Or runs out of time
 - e.g., Z3, developed at Microsoft
 - Ships with the Windows 7 device driver developer's kit
- Proof assistants
 - You give tool a theorem
 - You and tool cooperatively find proof
 - Human guides the construction
 - Machine does the low-level details
 - e.g., Coq, Isabelle/HOL, NuPRL
 - NuPRL: Prof. Constable (Cornell)
 - Coq: used to verify compiler, OS kernel, etc.

Coq

- 1984: Coquand and Huet first begin implementing a new theorem prover Coq based on calculus of inductive constructions
- 1992: Coq ported to Caml
- **2012:** Coq version 8.4
 - Implemented in OCaml
 - Can produce verified OCaml code

Thiery Coquand 1961 –

Coq's full system

Subset of Coq we'll use

Coq3110.v

 We went through the file up through and including implication and forall.

Please hold still for 1 more minute

WRAP-UP FOR TODAY

Upcoming events

- PS5 due tonight
- Prelim 2 in one week

This is mechanized.

THIS IS 3110