CS 3110

Lecture 21: Logic, part II

To Truth through Proof

Prof. Clarkson Fall 2014

Today's music: "The Devil went down to Georgia" by The Charlie Daniels Band

Review

Current topic:

- How to reason about correctness of code
- Last week: informal arguments

Today:

- Logic, part II
- Upgrade from propositional logic to predicate logic

Question #1

How much of PS5 have you finished?

- A. None
- B. About 25%
- C. About 50%
- D. About 75%
- E. I'm done!!!

Review: A biased perspective on logic

- A *logic* is a programming language for expressing reasoning about evidence
- Like any PL, a logic has
 - syntax
 - dynamic semantics (evaluation rules) --omitted
 here
 - static semantics (type checking)

Review: IPC

IPC= Intuitionistic Propositional Calculus

Syntax:

Review: Proof rules so far

Rule name	Rule
/\ intro	if $\mathbf{F} \mid -\mathbf{f1}$ and $\mathbf{F} \mid -\mathbf{f2}$ then $\mathbf{F} \mid -\mathbf{f1} / \mathbf{f2}$
∕\ elim L	if F - f1 /\ f2 then F - f1
∕\ elim R	if F - f1 /\ f2 then F - f2
=> elim	if $\mathbf{F} \mid -\mathbf{f}$ and $\mathbf{F} \mid -\mathbf{f} => \mathbf{g}$ then $\mathbf{F} \mid -\mathbf{g}$
=> intro	if F , f - g then F - f => g
assump	f - f
weak	if F - f then F,g - f
set assump	F,f - f

Evidence for true and false

Q: What constitutes evidence for **true**?

A: We don't need any; true trivially holds

Q: What constitutes evidence for **false**?

A: Nothing; **false** can never hold.

If we ever did somehow have evidence for **false**, then we'd be in a contradictory situation, and all reason has broken down.

Proof rules for true and false

- F |- true
 - only an introduction rule, no elimination
 - another axiom
 - intuition: we can always give evidence for true
- if F | false then F | f
 - ex falso quodlibet: "from false follows whatever you please"
 - Principle of Explosion
 - only an elimination rule, no introduction
 - intuition: we can never give evidence for false; but once we can conclude false, we can conclude anything

Evidence for ~

Q: What constitutes evidence for **~f**?

A: Since **~f** really means **f=>false**, it would be a way of transforming evidence for **f** into evidence for false. That is, a way of reaching a contradiction.

Proof rules for ~

Negation is just syntactic sugar, so free to convert between those two forms:

- if F |- f => false then F |- ~f
 - intuition: if there's a way to transform evidence for finto evidence for false, then you have evidence for ~f
- if F | ~f then F | f => false
 - intuition: if you have evidence for ~f, then you have a way of transforming evidence for f into evidence for false

Evidence for \/

Q: What constitutes evidence for $f1\f2$?

A: Evidence for either **£1** or for **£2**, tagged to indicate which one it's evidence for.

So evidence for **f1**\/**f2** is really a value of a **datatype**:

```
type ('a,'b) sum =
  Left of 'a | Right of 'b
```

Proof rules for \/

- if F | f1 then F | f1 \/ f2
- if F | f2 then F | f1 \/ f2
 - intuition: if you have evidence for £1, then you have evidence for £1\/f2
 - further intuition: these rules are really just constructor application

Proof rules for \/

- if F |- f1 \/ f2 and F |- f1 => g
 and F |- f2 => g then F |- g
 - intuition: if you have evidence for £1\/£2, and if you have a way of transforming evidence for £1 into evidence for g, as well as for £2 into g, then you can obtain evidence for g
 - further intuition: this rule is really just pattern matching! match s with Left f1 -> e1
 - | Right f2 -> e2

Proof with \/

Let's show
$$|-(P \setminus Q) => (Q \setminus P)$$

- 1. $P \setminus Q \mid P \setminus Q$ by assump
- 2. **P** | **P** by assump
- 3. P $\mid -Q \mid / P$ by (2) and \mid / I intro R
- 4. $| P => Q \setminus / P$ by (3) and =>intro
- 5. P \/ Q |- P => Q \/ P by (4) and weak.
- 6. Q | Q by assump
- 7. $Q \mid -Q \mid /P$ by (6) and $\backslash /$ intro L
- 8. $| Q = > Q \setminus / P$ by (7) and = > intro
- 9. P $\backslash /$ Q $\mid -$ Q \Rightarrow Q $\backslash /$ P by (8) and weak.
- 11. $|-(P \setminus Q)| => (Q \setminus P)$ by => intro

$$|-(P // Q) => (Q // P)$$

$$P/Q \mid - P/Q \quad P/Q \mid - P=>(Q/P) \quad P/Q \mid - Q=>(Q/P)$$

$$P \setminus Q \mid - Q => (Q \setminus P)$$

\/ elim

=> intro

$$|-(P // Q) => (Q // P)$$

assump

$$P \setminus O \mid - P => (O \setminus P)$$

$$P/Q \mid - P/Q \qquad P/Q \mid - P=>(Q/P) \qquad P/Q \mid - Q=>(Q/P)$$

\/ elim

=> intro

$$|-(P // Q) => (Q // P)$$

P \/ Q |- Q \/ P

=> intro

\/ elim

$$|-(P // Q) => (Q // P)$$

\/ elim

|-(P // Q) => (Q // P)

=> intro

Note: bad formatting! hard to fit on slide 🕾

As an OCaml program

```
let or_comm (s: ('p,'q) sum)) : ('q,'p) sum =
  match s with
    Left p -> Right p
    | Right q -> Left q
```

How to think about this program:

or_comm is a function that takes in evidence for either 'p or 'q, and returns evidence for either 'q or 'p

As an OCaml program

 $(P \setminus / Q) \Rightarrow (Q \setminus / P)$

```
let or comm (s: ('p,'q) sum) : ('q,'p) sum =
  match s with
    Left p -> Right p
  | Right q -> Left q
What is its type?
('p, 'q) sum -> ('q, 'p) sum
imagine we could write sum as infix +...
'p + 'q -> 'q + 'p
What is the formula we proved?
```

What about $P \setminus / (\sim P)$?

- aka excluded middle
- Many presentations of logic simply assume this holds for any proposition P
 - Indeed, for any formula £
- Cannot be proved in IPC
- But we could add | P \/ (~P) to IPC to get a new logic, CPC
 - CPC has same syntax as IPC, but type system that's "bigger" by one rule
 - Then we'd be saying there's always a way to give evidence for either P, or for P=>false.
 - But we wouldn't be saying what that evidence is...

Classical vs. constructive

- Without excluded middle we have constructive logic
 - Constructive ≅ intuitionistic
 - A constructive proof is an algorithm (cf. the programs we've been writing that correspond to proofs)
- With it, we have classical logic
 - CPC = classical propositional calculus
- Truth vs. proof
 - Truth:
 - Classical proofs are concerned with truth values
 - All propositions are either true or false
 - Proof:
 - Constructive proofs are concerned with evidence
 - Propositions don't have "truth values"; rather, their truth is unknown until can be (dis)proved

Proof rules of IPC, part 1

Rule name	Rule
/\ intro	if $\mathbf{F} \mid -\mathbf{f1}$ and $\mathbf{F} \mid -\mathbf{f2}$ then $\mathbf{F} \mid -\mathbf{f1} / \mathbf{f2}$
/\ elim L	if F - f1 /\ f2 then F - f1
∕\ elim R	if F - f1 /\ f2 then F - f2
=> elim	if $F \mid -f$ and $F \mid -f => g$ then $F \mid -g$
=> intro	if F , f - g then F - f => g
assump	f - f
weak	if F - f then F,g - f
set assump	F,f - f

Proof rules of IPC, part 2

Rule name	Rule
V intro L	if F - f1 then F - f1 \/ f2
∨ intro R	if F - f 2 then F - f 1 \/ f 2
√ elim	if $F \mid -f1 \mid /f2$ and $F \mid -f1 => g$ and $F \mid -f2 => g$ then $F \mid -g$
true intro	F - true
false elim	if F - false then F - f
~ intro	if F - f => false then F - ~f
~ elim	if F - ~f then F - f => false

Natural deduction

- Style of proof system we just gave is called natural deduction
 - Gentzen (1934), Prawitz (1965)
 - Very few axioms, mostly inference rules
 - With intro and elim rules for each connective
- Graphical notation for proof trees is considered a strength of this style
 - Even if it doesn't work well in slides!
 - Even if it doesn't scale well to large proofs!
- In notes and in recitation: larger examples of proofs

Formalize this argument

- All squares are positive
- 9 is a square
- Therefore 9 is positive

Formalize this argument

- All squares are positive £
- 9 is a square g
- Therefore 9 is positive h

```
an attempt: f /\ g => h
...but that's not a provable formula
...so we might have trouble proving that
the return value of square is positive!
```

...we need predicates

Predicates

- *Predicates* aka *relations* upgrade propositions to have arguments:
 - is_positive(x)
 - is_square(x)
 - equals (x,y), usually written x=y
- Objects (the variables above) are the atomic things we now talk about
 - might be integers, lists of strings, real numbers, etc.
- Functions map between objects
 - square (3), which is 9
- Quantifiers let us talk about all objects at once:
 - "for all objects x, it holds that P(x)" (universal)
 - "there exists an object x, such that P(x) holds" (existential)

A new logic: IQC

Syntax:

- **P** is a meta-variable for predicates/relations (incl. *nullary* predicates **true** and **false**)
- **t** is a meta-variable for *terms*, including constants, variables, and functions **fn** applied to terms (including *nullary* functions, i.e., constants)

IQC

- IQC = Intuitionistic Quantifier Calculus
- CQC = Classical Quantifier Calculus
 - equals IQC + excluded middle
- CQC aka
 - first order logic (FOL)
 - predicate logic
 - predicate calculus

Formalize this argument

- All squares are positive forall x,
 is_square(x) => is_positive(x)
- 9 is a square is square (9)
- Therefore 9 is positive is positive (9)

```
((forall x, is_square(x) => is_positive(x))
/\ is_square(9))
=> is_positive(9)
```

Proof rules for IQC

- All the rules of IPC, plus intro and elim for quantifiers
- New notation:
 - -f(x) means a formula f that mentions a variable x
 - f(t) means that same formula f, but with all mentions of x replaced by term t

Evidence for forall

Q: What constitutes evidence for forall x, f(x)?

A: A way of producing evidence for **f**(**x**) out of an arbitrary object **x**.

...That is, a way of transforming an object **x** into evidence of **f** (**x**)

(note the similarity to =>)

Proof rules for forall

- if F | f(x) and F does not make any assumptions about x, then F | forall x, f(x)
 - introduction rule
 - intuition: if you can construct evidence for f (x)
 without making any assumptions about x, then you
 have a way of transforming x into evidence for f (x)

...but what does "make assumptions about" mean"?

Free variables

Free variables are variables that aren't bound by any quantifer

- **P(x)**: **x** is free
- forall x, P(x) /\ Q(y): x is not free and y is free
- R(x) => (forall x, P(x)): x is free in LHS of implication, but not in RHS

If **x** does not occur free in a formula, then the formula makes no assumptions about it.

Likewise for a set of formulae.

Free variables (formal defn)

```
FV(x) = \{x\}
FV(f(t1,...tn)) = FV(t1) \cup ... \cup FV(tn)
FV(P(t1,...tn)) = FV(t1) \cup ... \cup FV(tn)
FV(f1/\f2) = FV(f1) \cup FV(f2)
FV(f1=>f2) = FV(f1) \cup FV(f2)
FV(f1/f2) = FV(f1) \cup FV(f2)
FV(\sim f) = FV(f)
FV(forall x, f) = FV(f) \setminus \{x\}
FV(exists x, f) = FV(f) \setminus \{x\}
```

Proof rules for forall

- if F | f(x) and x does not occur free in F,
 then F | forall x, f(x)
 - introduction rule
 - "x does not occur free in F" means x not in FV (f) for any f in F
 - intuition: if you can construct evidence for f (x)
 without making any assumptions about x, then you
 have a way of transforming x into evidence for f (x)

Proof rules for forall

- if F | forall x, f(x), then F | f(t)
 - elimination rule
 - intuition: if you have a way of transforming any x into evidence for f(x), then you can use that to produce evidence for f(t) out of t

Proof with forall

```
Let's show |- (forall x, R(x) /\ Q(x)) => (forall x, R(x)) /\ (forall x, Q(x))
```

- 1. forall x, R(x) /\ Q(x) |- forall x, R(x) /\ Q(x) by assump.
- 2. forall x, R(x) /\ Q(x) |- R(x) /\ Q(x) by (1) and forall elim.
- 3. forall x, R(x) /\ Q(x) |- R(x) by (2) and /\ elim L
- 4. forall x, R(x) / Q(x) | forall x, R(x) by (3) and forall intro*
- 5. forall x, R(x) /\ Q(x) |- Q(x) by (2) and /\ elim R
- 6. forall x, R(x) / Q(x) | forall x, Q(x) by (5) and forall intro*
- 7. forall x, R(x) /\ Q(x) |- (forall x, R(x)) /\ (forall x, Q(x)) by (4), (6) and /\ intro
- 8. |- (forall x, R(x) /\ Q(x)) => (forall x, R(x)) /\
 (forall x, Q(x)) by (7) and => intro.

^{*} x does not occur free in LHS

Tree form

assump. assump. forall x, R(x) / Q(x)forall x, R(x) / Q(x) \mid - forall x, R(x) \mid \ Q(x) \mid forall x, R(x) \mid Q(x) forall elim forall elim forall x, R(x) / Q(x)forall x, R(x) / Q(x)|-R(x)|/Q(x)|-R(x)|/Q(x)/\ elim R /\ elim L forall x, R(x) / Q(x)forall x, R(x) / Q(x)|-R(x)||-Q(x)|forall intro* forall intro* forall x, R(x) / Q(x)forall x, R(x) / Q(x)|-(forall x, R(x))||-(forall x, Q(x))|/\ intro forall x, R(x) / Q(x) $\mid - \text{ (forall } x, R(x)) / \text{ (forall } x, Q(x))$ => intro |-(forall x, R(x) / Q(x)) =>(forall x, R(x)) /\ (forall x, Q(x))

Note: bad formatting! hard to fit on slide 😊

^{*} x does not occur free in LHS

As an OCaml program?

- OCaml's type system is not quite expressive enough to give a program whose type is that formula
 - In part, reason for that is to get good type inference
- Languages with richer type systems can do it
 - See CS 4110/6110
- Same will be true of existentials...

Evidence for exists

Q: What constitutes evidence for **exists x**, **f**(**x**)?

A: A witness object **w**, along with evidence for **f** (**w**).

Proof rules for exists

- if F |- f(t) then F |- exists x,
 f(x)
 - introduction rule
 - intuition: if you can construct evidence for f (t)
 then t is a witness.

Proof rules for exists

- if F | exists x, f(x) and F | f(x) => g and x does not occur free in F or
 g, then F | g
 - elimination rule
 - intuition: if you have a witness w for f (w), and if you have a way of transforming evidence for f (x) into evidence for g, and if there are no assumptions about x, then you can use w in place of x to get evidence for g.

Proof with exists

```
Let's show |-(exists x, Q(x))| / R(x) = (exists x, Q(x)) / (exists x, R(x))
1.
     Q(x) \mid -Q(x) by assump.
2.
     Q(x) | - exists x, Q(x) by (1) and exists intro
3.
     Q(x) \mid - (exists x, Q(x)) \setminus (exists x, R(x)) by (2) and \/ intro L
     |-Q(x)| = (exists x, Q(x)) / (exists x, R(x))  by (3) and => intro
4.
5.
     Q(x) \ / R(x) \ | - Q(x) \Rightarrow (exists x, Q(x)) \ / (exists x, R(x))  by (4) and weak.
6.
     Q(x) \ / R(x) \ | - R(x) => (exists x, Q(x)) / (exists x, R(x))  by repeat (1—5)
      with R
7.
     Q(x) \setminus R(x) \mid -Q(x) \setminus R(x) by assump.
     Q(x) \ / R(x) \ | - (exists x, Q(x)) \ / (exists x, R(x))  by \ /  elim using (7), (5), (6)
8.
     |-Q(x)|/R(x) => (exists x, Q(x))|/(exists x, R(x)) by (8) and => intro
9.
     exists x, Q(x) \setminus R(x) \mid -Q(x) \setminus R(x) \Rightarrow (exists x, Q(x)) \setminus (exists x)
      \mathbf{x}, \mathbf{R}(\mathbf{x})) by (9) and weak
11. exists x, Q(x) \setminus R(x) \mid - exists x, Q(x) \setminus R(x) by assump.
12. exists x, Q(x) \setminus R(x) \mid - (exists x, Q(x)) \setminus (exists x, R(x)) by exists elim
      using (11), (10), and x does not occur free in (exists x, Q(x) \setminus R(x)) or in (exists x,
     Q(x)) \/ (exists x, R(x))
13. |- (exists x, Q(x) \setminus R(x)) => (exists x, Q(x)) \/ (exists x, R(x)) by
```

tree form omitted; too big to fit on slides

=> intro

Proof rules of IQC

Rule name	Rule
	All rules of IPC
forall intro	<pre>if F - f(x) and x not in FV(F) then F - forall x, f(x)</pre>
forall elim	if F - forall x, f(x) then F - f(t)
exists intro	if $F \mid -f(t)$ then $F \mid -exists x$, $f(x)$
exists elim	if $\mathbf{F} \mid - \mathbf{exists} \ \mathbf{x}$, $\mathbf{f}(\mathbf{x})$ and $\mathbf{F} \mid - \mathbf{f}(\mathbf{x}) => \mathbf{g}$ and \mathbf{x} not in $FV(\mathbf{F}, \mathbf{g})$ then $\mathbf{F} \mid - \mathbf{g}$

Please hold still for 1 more minute

WRAP-UP FOR TODAY

Upcoming events

PS5 due Thursday

This is logical.

THIS IS 3110