
Prof. Clarkson
Fall 2014

CS 3110
Lecture 21: Logic, part II
To Truth through Proof

Today’s music: "e Devil went down to Georgia"
 by e Charlie Daniels Band

Review

Current topic:
•  How to reason about correctness of code
•  Last week: informal arguments

Today:
•  Logic, part II

•  Upgrade from propositional logic to predicate
logic

Question #1

How much of PS5 have you finished?
A.  None
B.  About 25%
C.  About 50%
D.  About 75%
E.  I’m done!!!

Review: A biased perspective on logic

•  A logic is a programming language for expressing
reasoning about evidence

•  Like any PL, a logic has
– syntax
– dynamic semantics (evaluation rules) --omitted

here

– static semantics (type checking)

Review: IPC
IPC= Intuitionistic Propositional Calculus

Syntax:

 f ::= P | f1 /\ f2 | f1 \/ f2
 | f1 => f2 | ~f
 P ::= true | false | ...

Review: Proof rules so far

Rule	
 name	
 Rule	

/\	
 intro	
 if	
 F |- f1 and	
 F |- f2 then	
 F |- f1 /\ f2

/\	
 elim	
 L	
 if	
 F |- f1 /\ f2 then	
 F |- f1

/\	
 elim	
 R	
 if	
 F |- f1 /\ f2 then	
 F |- f2	

=>	
 elim	
 if	
 F |- f and	
 F |- f => g then	
 F |- g	

=>	
 intro	
 if	
 F, f |- g then	
 F |- f => g

assump	
 f |- f

weak	
 if	
 F |- f then	
 F,g |- f	

set	
 assump	
 F,f |- f

Evidence for true and false

Q: What constitutes evidence for true?
A: We don't need any; true trivially holds

Q: What constitutes evidence for false?
A: Nothing; false can never hold.
If we ever did somehow have evidence for false , then
we'd be in a contradictory situation, and all reason has
broken down.

Proof rules for true and false

•  F |- true
–  only an introduction rule, no elimination
–  another axiom
–  intuition: we can always give evidence for true

•  if F |- false then F |- f
–  ex falso quodlibet: "from false follows whatever you

please"
–  Principle of Explosion
–  only an elimination rule, no introduction
–  intuition: we can never give evidence for false; but

once we can conclude false, we can conclude anything

Evidence for ~

Q: What constitutes evidence for ~f?
A: Since ~f really means f=>false, it would be
a way of transforming evidence for f into evidence
for false. at is, a way of reaching a contradiction.

Proof rules for ~

Negation is just syntactic sugar, so free to convert
between those two forms:
•  if F |- f => false then F |- ~f
–  intuition: if there's a way to transform evidence for f

into evidence for false, then you have evidence for
~f

•  if F |- ~f then F |- f => false
–  intuition: if you have evidence for ~f, then you have

a way of transforming evidence for f into evidence
for false

Evidence for \/

Q: What constitutes evidence for f1\/f2?
A: Evidence for either f1 or for f2, tagged to
indicate which one it's evidence for.

So evidence for f1\/f2 is really a value of a
datatype:
type ('a,'b) sum =
 Left of 'a | Right of 'b

Proof rules for \/

•  if F |- f1 then F |- f1 \/ f2
•  if F |- f2 then F |- f1 \/ f2
–  intuition: if you have evidence for f1, then you have

evidence for f1\/f2
–  further intuition: these rules are really just

constructor application

Proof rules for \/

•  if F |- f1 \/ f2 and F |- f1 => g
and F |- f2 => g then F |- g
–  intuition: if you have evidence for f1\/f2, and if you

have a way of transforming evidence for f1 into evidence
for g, as well as for f2 into g, then you can obtain
evidence for g

–  further intuition: this rule is really just pattern matching!
 match s with

 Left f1 -> e1
 | Right f2 -> e2

Proof with \/
Let's show |- (P \/ Q) => (Q \/ P)

1.   P \/ Q |- P \/ Q by assump
2.   P |- P by assump
3.   P |- Q \/ P by (2) and \/ intro R
4.   |- P => Q \/ P by (3) and => intro
5.   P \/ Q |- P => Q \/ P by (4) and weak.
6.   Q |- Q by assump
7.   Q |- Q \/ P by (6) and \/ intro L
8.   |- Q => Q \/ P by (7) and => intro
9.   P \/ Q |- Q => Q \/ P by (8) and weak.
10.  P \/ Q |- Q \/ P by (1), (5), (9) and \/ elim
11.  |- (P \/ Q) => (Q \/ P) by => intro

Tree form

|- (P \/ Q) => (Q \/ P)

Tree form

P \/ Q |- Q \/ P

|- (P \/ Q) => (Q \/ P)

=> intro

Tree form

\/ elim

P\/Q |- P\/Q P\/Q |- P=>(Q\/P) P\/Q |- Q=>(Q\/P)

P \/ Q |- Q \/ P

|- (P \/ Q) => (Q \/ P)

=> intro

Tree form

\/ elim

P\/Q |- P\/Q P\/Q |- P=>(Q\/P)

assump

P\/Q |- Q=>(Q\/P)

P \/ Q |- Q \/ P

|- (P \/ Q) => (Q \/ P)

=> intro

Tree form

\/ elim

=> intro

P\/Q |- P\/Q P\/Q |- P=>(Q\/P)

assump
P\/Q, P |- Q\/P

P\/Q |- Q=>(Q\/P)

P \/ Q |- Q \/ P

|- (P \/ Q) => (Q \/ P)

=> intro

Tree form

\/ elim

=> intro

P\/Q |- P\/Q P\/Q |- P=>(Q\/P)

assump
P\/Q, P |- Q\/P

P |- Q\/P
weak

P\/Q |- Q=>(Q\/P)

P \/ Q |- Q \/ P

|- (P \/ Q) => (Q \/ P)

=> intro

Tree form

\/ elim

=> intro

P\/Q |- P\/Q P\/Q |- P=>(Q\/P)

assump
P\/Q, P |- Q\/P

P |- Q\/P
weak

\/ intro-r

P\/Q |- Q=>(Q\/P)

P \/ Q |- Q \/ P

|- (P \/ Q) => (Q \/ P)

=> intro

P |- P
assump

Tree form

\/ elim

=> intro

P\/Q |- P\/Q P\/Q |- P=>(Q\/P) P\/Q |- Q=>(Q\/P)

assump
P\/Q, P |- Q\/P

P |- Q\/P
weak

\/ intro-r

=> intro

P\/Q, Q |- Q\/P

Q |- Q\/P
weak

\/ intro-l

Note:	
 	
 bad	
 forma<ng!	
 	
 hard	
 to	
 fit	
 on	
 slide	
 L	

P \/ Q |- Q \/ P

|- (P \/ Q) => (Q \/ P)

=> intro

P |- P
assump

Q |- Q
assump

As an OCaml program

let or_comm (s: ('p,'q) sum)) : ('q,'p) sum =
 match s with
 Left p -> Right p
 | Right q -> Left q

How to think about this program:

or_comm is a function that takes in evidence for either
'p or 'q, and returns evidence for either 'q or 'p

As an OCaml program
let or_comm (s: ('p,'q) sum) : ('q,'p) sum =
 match s with
 Left p -> Right p
 | Right q -> Left q

What is its type?
('p, 'q) sum -> ('q, 'p) sum
imagine we could write sum as infix +...
'p + 'q -> 'q + 'p

What is the formula we proved?
(P \/ Q) => (Q \/ P)

What about P\/(~P)?

•  aka excluded middle
•  Many presentations of logic simply assume this holds for

any proposition P
–  Indeed, for any formula f

•  Cannot be proved in IPC
•  But we could add |- P \/ (~P) to IPC to get a new

logic, CPC
–  CPC has same syntax as IPC, but type system that's "bigger"

by one rule
– en we'd be saying there's always a way to give evidence for

either P, or for P=>false.
–  But we wouldn't be saying what that evidence is...

The Devil's Middle

Classical vs. constructive

•  Without excluded middle we have constructive logic
–  Constructive ≅ intuitionistic
–  A constructive proof is an algorithm (cf. the programs we've been

writing that correspond to proofs)
•  With it, we have classical logic

–  CPC = classical propositional calculus
•  Truth vs. proof

–  Truth:
•  Classical proofs are concerned with truth values
•  All propositions are either true or false

–  Proof:
•  Constructive proofs are concerned with evidence
•  Propositions don't have "truth values"; rather, their truth is unknown until

can be (dis)proved

Proof rules of IPC, part 1
Rule	
 name	
 Rule	

/\	
 intro	
 if	
 F |- f1 and	
 F |- f2 then	
 F |- f1 /\ f2

/\	
 elim	
 L	
 if	
 F |- f1 /\ f2 then	
 F |- f1

/\	
 elim	
 R	
 if	
 F |- f1 /\ f2 then	
 F |- f2	

=>	
 elim	
 if	
 F |- f and	
 F |- f => g then	
 F |- g	

=>	
 intro	
 if	
 F, f |- g then	
 F |- f => g

assump	
 f |- f

weak	
 if	
 F |- f then	
 F,g |- f	

set	
 assump	
 F,f |- f

Proof rules of IPC, part 2
Rule	
 name	
 Rule	

\/	
 intro	
 L	
 if	
 F |- f1 then	
 F |- f1 \/ f2

\/	
 intro	
 R	
 if	
 F |- f2 then	
 F |- f1 \/ f2

\/	
 elim	
 if	
 F |- f1 \/ f2 and	
 F |- f1 => g
and	
 F |- f2 => g then	
 F |- g

true	
 intro	
 F |- true

false	
 elim	
 if	
 F |- false then	
 F |- f

~	
 intro	
 if	
 F |- f => false then	
 F |- ~f

~	
 elim	
 if	
 F |- ~f then	
 F |- f => false

Natural deduction

•  Style of proof system we just gave is called natural
deduction
– Gentzen (1934), Prawitz (1965)
– Very few axioms, mostly inference rules
– With intro and elim rules for each connective

•  Graphical notation for proof trees is considered a
strength of this style
–  Even if it doesn't work well in slides! J
–  Even if it doesn't scale well to large proofs!

•  In notes and in recitation: larger examples of proofs

Formalize this argument

•  All squares are positive
•  9 is a square

•  erefore 9 is positive

Formalize this argument

•  All squares are positive f
•  9 is a square g
•  erefore 9 is positive h

an attempt: f /\ g => h
...but that's not a provable formula
...so we might have trouble proving that
 the return value of square is positive!
...we need predicates

Predicates

•  Predicates aka relations upgrade propositions to have
arguments:
–  is_positive(x)
–  is_square(x)
–  equals(x,y), usually written x=y

•  Objects (the variables above) are the atomic things we now talk
about
–  might be integers, lists of strings, real numbers, etc.

•  Functions map between objects
–  square(3), which is 9

•  Quantifiers let us talk about all objects at once:
–  "for all objects x, it holds that P(x)" (universal)
–  "there exists an object x, such that P(x) holds" (existential)

A new logic: IQC

Syntax:
 f ::= P(t1,...,tn)

 | f1 /\ f2 | f1 \/ f2
 | f1 => f2 | ~f
 | forall x, f
 | exists x, f
 t ::= x | fn(t1,...,tn)

•  P is a meta-variable for predicates/relations (incl. nullary predicates true and false)
•  t is a meta-variable for terms, including constants, variables, and functions fn applied

to terms (including nullary functions, i.e., constants)

IQC

•  IQC = Intuitionistic Quantifier Calculus
•  CQC = Classical Quantifier Calculus
– equals IQC + excluded middle

•  CQC aka
– first order logic (FOL)

– predicate logic
– predicate calculus

Formalize this argument

•  All squares are positive forall x,
is_square(x) => is_positive(x)

•  9 is a square is_square(9)
•  erefore 9 is positive is_positive(9)

((forall x, is_square(x) => is_positive(x))
 /\ is_square(9))
=> is_positive(9)

Proof rules for IQC

•  All the rules of IPC, plus intro and elim for
quantifiers

•  New notation:
– f(x) means a formula f that mentions a variable x
– f(t) means that same formula f, but with all

mentions of x replaced by term t

Evidence for forall

Q: What constitutes evidence for
forall x, f(x)?
A: A way of producing evidence for f(x) out of
an arbitrary object x.

...at is, a way of transforming an object x into
evidence of f(x)
(note the similarity to =>)

Proof rules for forall

•  if F |- f(x)and F does not make any
assumptions about x, then F |- forall x,
f(x)
–  introduction rule
–  intuition: if you can construct evidence for f(x)

without making any assumptions about x, then you
have a way of transforming x into evidence for f(x)

...but what does "make assumptions about" mean"?

Free variables

Free variables are variables that aren't bound by any quantifer
•  P(x): x is free
•  forall x, P(x) /\ Q(y): x is not free and y is

free
•  R(x) => (forall x, P(x)): x is free in LHS of

implication, but not in RHS

If x does not occur free in a formula, then the formula makes
no assumptions about it.
Likewise for a set of formulae.

Free variables (formal defn)

FV(x) = {x}
FV(f(t1,...tn)) = FV(t1) ∪... ∪ FV(tn)
FV(P(t1,...tn)) = FV(t1) ∪... ∪ FV(tn)
FV(f1/\f2) = FV(f1) ∪ FV(f2)
FV(f1=>f2) = FV(f1) ∪ FV(f2)
FV(f1\/f2) = FV(f1) ∪ FV(f2)
FV(~f) = FV(f)
FV(forall x, f) = FV(f) \ {x}
FV(exists x, f) = FV(f) \ {x}

Proof rules for forall

•  if F |- f(x)and x does not occur free in F,
then F |- forall x, f(x)
–  introduction rule

– "x does not occur free in F" means x not in
FV(f) for any f in F

–  intuition: if you can construct evidence for f(x)
without making any assumptions about x, then you
have a way of transforming x into evidence for f(x)

Proof rules for forall

•  if F |- forall x, f(x), then F |-
f(t)
– elimination rule

–  intuition: if you have a way of transforming any x
into evidence for f(x), then you can use that to
produce evidence for f(t) out of t

Proof with forall
Let's show |- (forall x, R(x) /\ Q(x)) => (forall x, R(x)) /\
(forall x, Q(x))

1.   forall x, R(x) /\ Q(x) |- forall x, R(x) /\ Q(x) by

assump.
2.   forall x, R(x) /\ Q(x) |- R(x) /\ Q(x) by (1) and forall elim.
3.   forall x, R(x) /\ Q(x) |- R(x) by (2) and /\ elim L
4.   forall x, R(x) /\ Q(x) |- forall x, R(x) by (3) and forall intro*
5.   forall x, R(x) /\ Q(x) |- Q(x) by (2) and /\ elim R
6.   forall x, R(x) /\ Q(x) |- forall x, Q(x) by (5) and forall intro*
7.   forall x, R(x) /\ Q(x) |- (forall x, R(x)) /\ (forall

x, Q(x)) by (4), (6) and /\ intro
8.   |- (forall x, R(x) /\ Q(x)) => (forall x, R(x)) /\

(forall x, Q(x)) by (7) and => intro.

* x does not occur free in LHS

|- (forall x, R(x) /\ Q(x)) =>
 (forall x, R(x)) /\ (forall x, Q(x))

=> intro

Note:	
 	
 bad	
 forma<ng!	
 	
 hard	
 to	
 fit	
 on	
 slide	
 L	

forall x, R(x) /\ Q(x)
 |- (forall x, R(x)) /\ (forall x, Q(x))

forall x, R(x) /\ Q(x)
 |- (forall x, R(x))

forall x, R(x) /\ Q(x)
 |- R(x)

forall x, R(x) /\ Q(x)
 |- (forall x, Q(x))

forall x, R(x) /\ Q(x)
 |- Q(x)

forall x, R(x) /\ Q(x)
 |- R(x) /\ Q(x)

forall x, R(x) /\ Q(x)
 |- forall x, R(x) /\ Q(x)

forall x, R(x) /\ Q(x)
 |- R(x) /\ Q(x)

forall x, R(x) /\ Q(x)
 |- forall x, R(x) /\ Q(x)

/\ intro

forall intro*

/\ elim L

forall elim

assump.

forall intro*

/\ elim R

forall elim

assump.

Tree form

*	
 x	
 does	
 not	
 occur	
 free	
 in	
 LHS	

As an OCaml program?

•  OCaml's type system is not quite expressive
enough to give a program whose type is that
formula
–  In part, reason for that is to get good type inference

•  Languages with richer type systems can do it
– See CS 4110/6110

•  Same will be true of existentials...

Evidence for exists

Q: What constitutes evidence for exists x,
f(x)?
A: A witness object w, along with evidence for
f(w).

Proof rules for exists

•  if F |- f(t) then F |- exists x,
f(x)
–  introduction rule

–  intuition: if you can construct evidence for f(t)
then t is a witness.

Proof rules for exists

•  if F |- exists x, f(x)and F |-
f(x) => g and x does not occur free in F or
g, then F |- g
– elimination rule
–  intuition: if you have a witness w for f(w), and if

you have a way of transforming evidence for f(x)
into evidence for g, and if there are no assumptions
about x, then you can use w in place of x to get
evidence for g.

Proof with exists
Let's show |- (exists x, Q(x) \/ R(x)) => (exists x, Q(x)) \/ (exists x, R(x))

1.   Q(x) |- Q(x) by assump.
2.   Q(x) |- exists x, Q(x) by (1) and exists intro
3.   Q(x) |- (exists x, Q(x)) \/ (exists x, R(x)) by (2) and \/ intro L
4.   |- Q(x) => (exists x, Q(x)) \/ (exists x, R(x)) by (3) and => intro
5.   Q(x) \/ R(x) |- Q(x) => (exists x, Q(x)) \/ (exists x, R(x)) by (4) and weak.
6.   Q(x) \/ R(x) |- R(x) => (exists x, Q(x)) \/ (exists x, R(x)) by repeat (1—5)

with R
7.   Q(x) \/ R(x) |- Q(x) \/ R(x) by assump.
8.   Q(x) \/ R(x) |- (exists x, Q(x)) \/ (exists x, R(x)) by \/ elim using (7), (5), (6)
9.   |- Q(x) \/ R(x) => (exists x, Q(x)) \/ (exists x, R(x)) by (8) and => intro
10.   exists x, Q(x) \/ R(x) |- Q(x) \/ R(x) => (exists x, Q(x)) \/ (exists

x, R(x)) by (9) and weak
11.   exists x, Q(x) \/ R(x) |- exists x, Q(x) \/ R(x) by assump.
12.   exists x, Q(x) \/ R(x) |- (exists x, Q(x)) \/ (exists x, R(x))by exists elim

using (11), (10), and x does not occur free in (exists x, Q(x) \/ R(x)) or in (exists x,
Q(x)) \/ (exists x, R(x))

13.   |- (exists x, Q(x) \/ R(x)) => (exists x, Q(x)) \/ (exists x, R(x)) by
=> intro

tree form omitted; too big to fit on slides

Proof rules of IQC
Rule	
 name	
 Rule	

-­‐-­‐-­‐	
 All rules of IPC

forall	
 intro	
 if	
 F |- f(x) and	
 x	
 not	
 in	
 FV(F)	
 	

then	
 F |- forall x, f(x)

forall	
 elim	
 if	
 F |- forall x, f(x) then	
 F |- f(t)

exists	
 intro	
 if	
 F |- f(t) then	
 F |- exists x, f(x)	

exists	
 elim	
 if	
 F |- exists x, f(x) and	
 F |- f(x) => g
and	
 x	
 not	
 in	
 FV(F,g)	
 then	
 F |- g	

WRAP-UP FOR TODAY
Please hold still for 1 more minute

Upcoming events

•  PS5 due ursday

is is logical.

THIS IS 3110

