
Prof. Clarkson 
Fall 2014 

CS 3110 
Lecture 21:  Logic, part II 
To Truth through Proof 

Today’s music:  "e Devil went down to Georgia" 
 by e Charlie Daniels Band 



Review 

Current topic: 
•  How to reason about correctness of code 
•  Last week: informal arguments 

 

Today:  
•  Logic, part II 

•  Upgrade from propositional logic to predicate 
logic 



Question #1 

How much of PS5 have you finished? 
A.  None 
B.  About 25% 
C.  About 50% 
D.  About 75% 
E.  I’m done!!! 



Review: A biased perspective on logic 

•  A logic is a programming language for expressing 
reasoning about evidence 

•  Like any PL, a logic has 
– syntax 
– dynamic semantics (evaluation rules)  --omitted 

here 

– static semantics (type checking) 



Review: IPC 
IPC= Intuitionistic Propositional Calculus 

 
Syntax: 

 f ::= P | f1 /\ f2 | f1 \/ f2  
      | f1 => f2 | ~f 
  P ::= true | false | ... 
 



Review: Proof rules so far 

 
 
Rule	
  name	
   Rule	
  

/\	
  intro	
   if	
  F |- f1 and	
  F |- f2 then	
  F |- f1 /\ f2 

/\	
  elim	
  L	
   if	
  F |- f1 /\ f2 then	
  F |- f1 

/\	
  elim	
  R	
   if	
  F |- f1 /\ f2 then	
  F |- f2	
  

=>	
  elim	
   if	
  F |- f and	
  F |- f => g then	
  F |- g	
  

=>	
  intro	
   if	
  F, f |- g then	
  F |- f => g 

assump	
   f |- f 

weak	
   if	
  F |- f then	
  F,g |- f	
  

set	
  assump	
   F,f |- f 



Evidence for true and false 

Q:  What constitutes evidence for true? 
A:  We don't need any; true trivially holds 
 
Q:  What constitutes evidence for false? 
A:  Nothing; false can never hold.   
If we ever did somehow have evidence for false , then 
we'd be in a contradictory situation, and all reason has 
broken down. 



Proof rules for true and false 

•  F |- true 
–  only an introduction rule, no elimination 
–  another axiom 
–  intuition:  we can always give evidence for true 

•  if F |- false then F |- f 
–  ex falso quodlibet:  "from false follows whatever you 

please" 
–  Principle of Explosion 
–  only an elimination rule, no introduction 
–  intuition:  we can never give evidence for false; but 

once we can conclude false, we can conclude anything 



Evidence for ~ 

Q:  What constitutes evidence for ~f? 
A:  Since ~f really means f=>false, it would be 
a way of transforming evidence for f into evidence 
for false.  at is, a way of reaching a contradiction. 



Proof rules for ~ 

Negation is just syntactic sugar, so free to convert 
between those two forms: 
•  if F |- f => false then F |- ~f 
–  intuition:  if there's a way to transform evidence for f 

into evidence for false, then you have evidence for 
~f 

•  if F |- ~f then F |- f => false 
–  intuition:  if you have evidence for ~f, then you have 

a way of transforming evidence for f into evidence 
for false 



Evidence for \/ 

Q:  What constitutes evidence for f1\/f2? 
A:  Evidence for either f1 or for f2, tagged to 
indicate which one it's evidence for. 
 
So evidence for f1\/f2 is really a value of a 
datatype: 
type ('a,'b) sum =  
  Left of 'a | Right of 'b 



Proof rules for \/ 

•  if F |- f1 then F |- f1 \/ f2 
•  if F |- f2 then F |- f1 \/ f2 
–  intuition:  if you have evidence for f1, then you have 

evidence for f1\/f2 
–  further intuition:  these rules are really just 

constructor application 



Proof rules for \/ 

•  if F |- f1 \/ f2 and F |- f1 => g 
and F |- f2 => g then F |- g 
–  intuition:  if you have evidence for f1\/f2, and if you 

have a way of transforming evidence for f1 into evidence 
for g, as well as for f2 into g, then you can obtain 
evidence for g 

–  further intuition:  this rule is really just pattern matching! 
 match s with  

    Left f1 -> e1  
  | Right f2 -> e2 



Proof with \/ 
Let's show |- (P \/ Q) => (Q \/ P) 
 
1.   P \/ Q |- P \/ Q by assump 
2.   P |- P by assump 
3.   P |- Q \/ P by (2) and \/ intro R 
4.   |- P => Q \/ P by (3) and => intro 
5.   P \/ Q |- P => Q \/ P by (4) and weak. 
6.   Q |- Q by assump 
7.   Q |- Q \/ P by (6) and \/ intro L 
8.   |- Q => Q \/ P by (7) and => intro 
9.   P \/ Q |- Q => Q \/ P by (8) and weak. 
10.  P \/ Q |- Q \/ P by (1), (5), (9) and \/ elim 
11.  |- (P \/ Q) => (Q \/ P) by => intro 



Tree form 

|- (P \/ Q) => (Q \/ P) 



Tree form 

P \/ Q |- Q \/ P 

|- (P \/ Q) => (Q \/ P) 

=> intro 



Tree form 

\/ elim 

P\/Q |- P\/Q P\/Q |- P=>(Q\/P) P\/Q |- Q=>(Q\/P) 

P \/ Q |- Q \/ P 

|- (P \/ Q) => (Q \/ P) 

=> intro 



Tree form 

\/ elim 

P\/Q |- P\/Q P\/Q |- P=>(Q\/P) 

assump 

P\/Q |- Q=>(Q\/P) 

P \/ Q |- Q \/ P 

|- (P \/ Q) => (Q \/ P) 

=> intro 



Tree form 

\/ elim 

=> intro 

P\/Q |- P\/Q P\/Q |- P=>(Q\/P) 

assump 
P\/Q, P |- Q\/P 

P\/Q |- Q=>(Q\/P) 

P \/ Q |- Q \/ P 

|- (P \/ Q) => (Q \/ P) 

=> intro 



Tree form 

\/ elim 

=> intro 

P\/Q |- P\/Q P\/Q |- P=>(Q\/P) 

assump 
P\/Q, P |- Q\/P 

P |- Q\/P 
weak 

P\/Q |- Q=>(Q\/P) 

P \/ Q |- Q \/ P 

|- (P \/ Q) => (Q \/ P) 

=> intro 



Tree form 

\/ elim 

=> intro 

P\/Q |- P\/Q P\/Q |- P=>(Q\/P) 

assump 
P\/Q, P |- Q\/P 

P |- Q\/P 
weak 

\/ intro-r 

P\/Q |- Q=>(Q\/P) 

P \/ Q |- Q \/ P 

|- (P \/ Q) => (Q \/ P) 

=> intro 

P |- P 
assump 



Tree form 

\/ elim 

=> intro 

P\/Q |- P\/Q P\/Q |- P=>(Q\/P) P\/Q |- Q=>(Q\/P) 

assump 
P\/Q, P |- Q\/P 

P |- Q\/P 
weak 

\/ intro-r 

=> intro 

P\/Q, Q |- Q\/P 

Q |- Q\/P 
weak 

\/ intro-l 

Note:	
  	
  bad	
  forma<ng!	
  	
  hard	
  to	
  fit	
  on	
  slide	
  L	
  

P \/ Q |- Q \/ P 

|- (P \/ Q) => (Q \/ P) 

=> intro 

P |- P 
assump 

Q |- Q 
assump 



As an OCaml program 

let or_comm (s: ('p,'q) sum)) : ('q,'p) sum = 
  match s with  
    Left p -> Right p 
  | Right q -> Left q 

 
How to think about this program: 

or_comm is a function that takes in evidence for either 
'p or 'q, and returns evidence for either 'q or 'p 
 



As an OCaml program 
let or_comm (s: ('p,'q) sum) : ('q,'p) sum = 
  match s with  
    Left p -> Right p 
  | Right q -> Left q 
 
What is its type? 
('p, 'q) sum -> ('q, 'p) sum 
imagine we could write sum as infix +... 
'p + 'q -> 'q + 'p 
 
What is the formula we proved? 
(P \/ Q) => (Q \/ P) 
 



What about P\/(~P)? 

•  aka excluded middle 
•  Many presentations of logic simply assume this holds for 

any proposition P 
–  Indeed, for any formula f 

•  Cannot be proved in IPC 
•  But we could add |- P \/ (~P) to IPC to get a new 

logic, CPC 
–  CPC has same syntax as IPC, but type system that's "bigger" 

by one rule 
– en we'd be saying there's always a way to give evidence for 

either P, or for P=>false.   
–  But we wouldn't be saying what that evidence is... 



The Devil's Middle 



Classical vs. constructive 

•  Without excluded middle we have constructive logic 
–  Constructive ≅ intuitionistic 
–  A constructive proof is an algorithm (cf. the programs we've been 

writing that correspond to proofs) 
•  With it, we have classical logic 

–  CPC = classical propositional calculus 
•  Truth vs. proof 

–  Truth: 
•  Classical proofs are concerned with truth values 
•  All propositions are either true or false 

–  Proof: 
•  Constructive proofs are concerned with evidence 
•  Propositions don't have "truth values"; rather, their truth is unknown until 

can be (dis)proved  



Proof rules of IPC, part 1 
Rule	
  name	
   Rule	
  

/\	
  intro	
   if	
  F |- f1 and	
  F |- f2 then	
  F |- f1 /\ f2 

/\	
  elim	
  L	
   if	
  F |- f1 /\ f2 then	
  F |- f1 

/\	
  elim	
  R	
   if	
  F |- f1 /\ f2 then	
  F |- f2	
  

=>	
  elim	
   if	
  F |- f and	
  F |- f => g then	
  F |- g	
  

=>	
  intro	
   if	
  F, f |- g then	
  F |- f => g 

assump	
   f |- f 

weak	
   if	
  F |- f then	
  F,g |- f	
  

set	
  assump	
   F,f |- f 



Proof rules of IPC, part 2 
Rule	
  name	
   Rule	
  

\/	
  intro	
  L	
   if	
  F |- f1 then	
  F |- f1 \/ f2 

\/	
  intro	
  R	
   if	
  F |- f2 then	
  F |- f1 \/ f2 

\/	
  elim	
   if	
  F |- f1 \/ f2 and	
  F |- f1 => g  
and	
  F |- f2 => g then	
  F |- g 

true	
  intro	
   F |- true 

false	
  elim	
   if	
  F |- false then	
  F |- f 

~	
  intro	
   if	
  F |- f => false then	
  F |- ~f 

~	
  elim	
   if	
  F |- ~f then	
  F |- f => false 



Natural deduction 

•  Style of proof system we just gave is called natural 
deduction 
– Gentzen (1934), Prawitz (1965) 
– Very few axioms, mostly inference rules 
– With intro and elim rules for each connective 

•  Graphical notation for proof trees is considered a 
strength of this style 
–  Even if it doesn't work well in slides! J 
–  Even if it doesn't scale well to large proofs! 

•  In notes and in recitation:  larger examples of proofs 



Formalize this argument 

•  All squares are positive   
•  9 is a square   

•  erefore 9 is positive   



Formalize this argument 

•  All squares are positive  f 
•  9 is a square  g 
•  erefore 9 is positive  h 

an attempt:  f /\ g => h 
...but that's not a provable formula 
...so we might have trouble proving that  
  the return value of square is positive! 
...we need predicates 
 



Predicates 

•  Predicates aka relations upgrade propositions to have 
arguments: 
–  is_positive(x) 
–  is_square(x) 
–  equals(x,y),  usually written x=y 

•  Objects (the variables above) are the atomic things we now talk 
about 
–  might be integers, lists of strings, real numbers, etc. 

•  Functions map between objects 
–  square(3), which is 9 

•  Quantifiers let us talk about all objects at once: 
–  "for all objects x, it holds that P(x)"  (universal) 
–  "there exists an object x, such that P(x) holds"  (existential) 

 
 



A new logic:  IQC 

Syntax: 
 f ::= P(t1,...,tn)  

      | f1 /\ f2 | f1 \/ f2  
      | f1 => f2 | ~f 
      | forall x, f 
      | exists x, f 
   t ::= x | fn(t1,...,tn) 

 
•  P is a meta-variable for predicates/relations (incl. nullary predicates true and false) 
•  t is a meta-variable for terms, including constants, variables, and functions fn applied 

to terms (including nullary functions, i.e., constants) 



IQC 

•  IQC = Intuitionistic Quantifier Calculus 
•  CQC = Classical Quantifier Calculus 
– equals IQC + excluded middle 

•  CQC aka 
– first order logic (FOL) 

– predicate logic 
– predicate calculus 



Formalize this argument 

•  All squares are positive  forall x, 
is_square(x) => is_positive(x) 

•  9 is a square  is_square(9) 
•  erefore 9 is positive  is_positive(9) 

((forall x, is_square(x) => is_positive(x)) 
 /\ is_square(9)) 
=> is_positive(9) 

 



Proof rules for IQC 

•  All the rules of IPC, plus intro and elim for 
quantifiers 

•  New notation:   
– f(x) means a formula f that mentions a variable x 
– f(t) means that same formula f, but with all 

mentions of x replaced by term t 

 



Evidence for forall 

Q:  What constitutes evidence for  
forall x, f(x)? 
A:  A way of producing evidence for f(x) out of 
an arbitrary object x.   

...at is, a way of transforming an object x into 
evidence of f(x) 
(note the similarity to =>) 



Proof rules for forall 

•  if F |- f(x)and F does not make any 
assumptions about x, then F |- forall x, 
f(x) 
–  introduction rule 
–  intuition:  if you can construct evidence for f(x) 

without making any assumptions about x, then you 
have a way of transforming x into evidence for f(x) 

...but what does "make assumptions about" mean"? 



Free variables 

Free variables are variables that aren't bound by any quantifer 
•  P(x):   x is free 
•  forall x, P(x) /\ Q(y):  x is not free and y is 

free 
•  R(x) => (forall x, P(x)):  x is free in LHS of 

implication, but not in RHS 

If x does not occur free in a formula, then the formula makes 
no assumptions about it. 
Likewise for a set of formulae. 
 



Free variables (formal defn) 

FV(x) = {x} 
FV(f(t1,...tn)) = FV(t1) ∪... ∪ FV(tn) 
FV(P(t1,...tn)) = FV(t1) ∪... ∪ FV(tn) 
FV(f1/\f2) = FV(f1) ∪ FV(f2) 
FV(f1=>f2) = FV(f1) ∪ FV(f2) 
FV(f1\/f2) = FV(f1) ∪ FV(f2) 
FV(~f) = FV(f) 
FV(forall x, f) = FV(f) \ {x} 
FV(exists x, f) = FV(f) \ {x} 
 
 
 



Proof rules for forall 

•  if F |- f(x)and x does not occur free in F, 
then F |- forall x, f(x) 
–  introduction rule 

– "x does not occur free in F" means x not in 
FV(f) for any f in F 

–  intuition:  if you can construct evidence for f(x) 
without making any assumptions about x, then you 
have a way of transforming x into evidence for f(x) 



Proof rules for forall 

•  if F |- forall x, f(x), then F |- 
f(t) 
– elimination rule 

–  intuition:  if you have a way of transforming any x 
into evidence for f(x), then you can use that to 
produce evidence for f(t) out of t 



Proof with forall 
Let's show |- (forall x, R(x) /\ Q(x)) => (forall x, R(x)) /\ 
(forall x, Q(x)) 
 
1.   forall x, R(x) /\ Q(x) |- forall x, R(x) /\ Q(x)  by 

assump. 
2.   forall x, R(x) /\ Q(x) |- R(x) /\ Q(x) by (1) and forall elim. 
3.   forall x, R(x) /\ Q(x) |- R(x) by (2) and /\ elim L 
4.   forall x, R(x) /\ Q(x) |- forall x, R(x) by (3) and forall intro* 
5.   forall x, R(x) /\ Q(x) |- Q(x) by (2) and /\ elim R 
6.   forall x, R(x) /\ Q(x) |- forall x, Q(x) by (5) and forall intro* 
7.   forall x, R(x) /\ Q(x) |- (forall x, R(x)) /\ (forall 

x, Q(x)) by (4), (6) and /\ intro 
8.   |- (forall x, R(x) /\ Q(x)) => (forall x, R(x)) /\ 

(forall x, Q(x)) by (7) and => intro. 

* x does not occur free in LHS 
 



|- (forall x, R(x) /\ Q(x)) =>  
   (forall x, R(x)) /\ (forall x, Q(x)) 

=> intro 

Note:	
  	
  bad	
  forma<ng!	
  	
  hard	
  to	
  fit	
  on	
  slide	
  L	
  

forall x, R(x) /\ Q(x) 
   |- (forall x, R(x)) /\ (forall x, Q(x)) 

forall x, R(x) /\ Q(x) 
   |- (forall x, R(x)) 

forall x, R(x) /\ Q(x)  
  |- R(x) 

forall x, R(x) /\ Q(x) 
   |- (forall x, Q(x)) 

forall x, R(x) /\ Q(x)  
  |- Q(x) 

forall x, R(x) /\ Q(x)  
  |- R(x) /\ Q(x) 

forall x, R(x) /\ Q(x)  
  |- forall x, R(x) /\ Q(x) 

forall x, R(x) /\ Q(x)  
  |- R(x) /\ Q(x) 

forall x, R(x) /\ Q(x)  
  |- forall x, R(x) /\ Q(x) 

/\ intro 

forall intro* 

/\ elim L 

forall elim 

assump. 

forall intro* 

/\ elim R 

forall elim 

assump. 

Tree form 

*	
  x	
  does	
  not	
  occur	
  free	
  in	
  LHS	
  



As an OCaml program? 

•  OCaml's type system is not quite expressive 
enough to give a program whose type is that 
formula 
–  In part, reason for that is to get good type inference 

•  Languages with richer type systems can do it 
– See CS 4110/6110 

•  Same will be true of existentials... 



Evidence for exists 

Q:  What constitutes evidence for exists x, 
f(x)? 
A:  A witness object w, along with evidence for 
f(w).   



Proof rules for exists 

•  if F |- f(t) then F |- exists x, 
f(x) 
–  introduction rule 

–  intuition:  if you can construct evidence for f(t) 
then t is a witness. 



Proof rules for exists 

•  if F |- exists x, f(x)and F |- 
f(x) => g and x does not occur free in F or 
g, then F |- g 
– elimination rule 
–  intuition:  if you have a witness w for f(w), and if 

you have a way of transforming evidence for f(x) 
into evidence for g, and if there are no assumptions 
about x, then you can use w in place of x to get 
evidence for g. 



Proof with exists 
Let's show |- (exists x, Q(x) \/ R(x)) => (exists x, Q(x)) \/ (exists x, R(x)) 
 
1.   Q(x) |- Q(x)  by assump. 
2.   Q(x) |- exists x, Q(x) by (1) and exists intro 
3.   Q(x) |- (exists x, Q(x)) \/ (exists x, R(x)) by (2) and \/ intro L 
4.   |- Q(x) => (exists x, Q(x)) \/ (exists x, R(x)) by (3) and => intro 
5.   Q(x) \/ R(x) |- Q(x) => (exists x, Q(x)) \/ (exists x, R(x)) by (4) and weak. 
6.   Q(x) \/ R(x) |- R(x) => (exists x, Q(x)) \/ (exists x, R(x)) by repeat (1—5) 

with R 
7.   Q(x) \/ R(x) |- Q(x) \/ R(x) by assump. 
8.   Q(x) \/ R(x) |- (exists x, Q(x)) \/ (exists x, R(x)) by \/ elim using (7), (5), (6) 
9.   |- Q(x) \/ R(x) => (exists x, Q(x)) \/ (exists x, R(x)) by (8) and => intro 
10.   exists x, Q(x) \/ R(x) |- Q(x) \/ R(x) => (exists x, Q(x)) \/ (exists 

x, R(x)) by (9) and weak 
11.   exists x, Q(x) \/ R(x) |- exists x, Q(x) \/ R(x) by assump. 
12.   exists x, Q(x) \/ R(x) |- (exists x, Q(x)) \/ (exists x, R(x))by exists elim 

using (11), (10), and x does not occur free in (exists x, Q(x) \/ R(x)) or in (exists x, 
Q(x)) \/ (exists x, R(x)) 

13.   |- (exists x, Q(x) \/ R(x)) => (exists x, Q(x)) \/ (exists x, R(x)) by 
=> intro 

tree form omitted; too big to fit on slides 



Proof rules of IQC 
Rule	
  name	
   Rule	
  

-­‐-­‐-­‐	
   All rules of IPC 

forall	
  intro	
   if	
  F |- f(x) and	
  x	
  not	
  in	
  FV(F)	
  	
  
then	
  F |- forall x, f(x) 

forall	
  elim	
   if	
  F |- forall x, f(x) then	
  F |- f(t) 

exists	
  intro	
   if	
  F |- f(t) then	
  F |- exists x, f(x)	
  

exists	
  elim	
   if	
  F |- exists x, f(x) and	
  F |- f(x) => g 
and	
  x	
  not	
  in	
  FV(F,g)	
  then	
  F |- g	
  



WRAP-UP FOR TODAY 
Please hold still for 1 more minute 



Upcoming events 

•  PS5 due ursday 
 

is is logical. 

THIS IS 3110 


