
Prof. Clarkson
Fall 2014

CS 3110
Lecture 2: Introduction to OCaml Semantics

Today’s music: Prelude and Fugue in G minor, BWV 885, by J.S. Bach (1685-1750)
Michael Clarkson, live in concert, 1999

Review

•  Recitation 1: Introduction to OCaml syntax
•  OCaml Tutorial (once more tonight, 7:30 pm,

Upson B7)
•  PS0 is out; PS1 will come out next Thursday

Today:
•  Brief discussion on aspects of learning a PL
•  Evaluation and type checking of OCaml

Five aspects of learning a PL
1.  Syntax: How do you write language constructs?

2.  Semantics: What do programs mean? (Type checking, evaluation
rules)

3.  Idioms: What are typical patterns for using language features to
express your computation?

4.  Libraries: What facilities does the language (or a well-known project)
provide “standard”? (E.g., file access, data structures)

5.  Tools: What do language implementations provide to make your job
easier? (E.g., top-level, debugger, GUI editor, …)

–  All are essential for good programmers to understand
–  Breaking a new PL down into these pieces makes it easier to

learn

Our Focus

3110 focuses on semantics and idioms

•  Libraries and tools are crucial, but throughout your career

you’ll learn new ones on the job every year

•  Semantics is like a meta-tool: it will help you learn languages
•  Idioms will make you a better programmer in those languages

•  Syntax is almost always boring
–  A fact to learn, like “Cornell was founded in 1865”
–  People obsess over subjective preferences {yawn}
–  Class rule: We don’t complain about syntax

Review of syntax

Syntactic class Meta-variable Examples

identifiers x, f a,x,y,x_y,foo1000

qualified identifiers String.length,Char.uppercase
(first part is module name)

Review of syntax

Syntactic class Meta-variable Examples

identifiers x, f a,x,y,x_y,foo1000

qualified identifiers String.length,Char.uppercase
(first part is module name)

constants c -2,-1,0,1,2 (integers)
1.0,-0.001,3.141 (floats)
true,false (booleans)
“hello”,“!” (strings)
‘A’,‘’,‘\n’ (characters)

Review of syntax

Syntactic class Meta-variable Examples

identifiers x, f a,x,y,x_y,foo1000

qualified identifiers String.length,Char.uppercase
(first part is module name)

constants c -2,-1,0,1,2 (integers)
1.0,-0.001,3.141 (floats)
true,false (booleans)
“hello”,“!” (strings)
‘A’,‘’,‘\n’ (characters)

unary operator u -,not

Review of syntax

Syntactic class Meta-variable Examples

identifiers x, f a,x,y,x_y,foo1000

qualified identifiers String.length,Char.uppercase
(first part is module name)

constants c -2,-1,0,1,2 (integers)
1.0,-0.001,3.141 (floats)
true,false (booleans)
“hello”,“!” (strings)
‘A’,‘’,‘\n’ (characters)

unary operator u -,not

binary operators b +,+.,*,-,>,<,>=,<=,^,!=

Review of syntax

Expressions (aka terms):
•  primary unit of OCaml programs
•  akin to statements or commands in imperative languages
•  described here in Backus-Naur Form (BNF):

e ::= x | c | u e | e1 b e2
 | if e then e else e
 | let d1 and … and dn in e
 | e (e1,…,en)

d ::= x = e
 | f ((x1:t),…,(xn:t)) : t = e

Backus and Naur

John Backus (1924-2007)
ACM Turing Award Winner 1977
“For profound, influential, and lasting
contributions to the design of practical
high-level programming systems”

Peter Naur (b. 1928)
ACM Turing Award Winner 2005
“For fundamental contributions to
programming language design”

Review of syntax

Types:

t ::= int | float | bool
 | string | char
 | t1 * … * tn -> t
 | t1 -> t2 -> t (built-in binary operators)

Type annotations are
•  mostly optional from OCaml’s perspective; can be inferred
•  hugely helpful from programmer’s perspective in reading

and debugging code

Expressions

•  Can get arbitrarily large since any subexpression can
contain subsubexpressions, etc.

•  Every kind of expression has:
–  Syntax
–  Semantics:

•  Type-checking rules: produce a type or fail with an error
message

•  Evaluation rules: produce a value
–  (or exception or infinite loop)
–  Used only on expressions that type-check

Values

•  All values are expressions

•  Not all expressions are values

•  A value is an expression that does not need any
further evaluation

•  Examples:
– 34, 17, 42 are values of type int
– true, false are values type bool

Question 1

What is 42?
A.  A value
B.  An expression
C.  Both a value and an expression
D.  Neither a value nor an expression
E.  (I’m lost)

Question 1

What is 42?
A.  A value
B.  An expression
C.  Both a value and an expression
D.  Neither a value nor an expression
E.  (I’m lost)

Question 2

What is int?
A.  A value
B.  An expression
C.  Both a value and an expression
D.  Neither a value nor an expression
E.  (I’m lost)

Question 2

What is int?
A.  A value
B.  An expression
C.  Both a value and an expression
D.  Neither a value nor an expression
E.  (I’m lost)

Question 3

What is “cs”^”3110”?
A.  A value
B.  An expression
C.  Both a value and an expression
D.  Neither a value nor an expression
E.  (I’m lost)

Question 3

What is “cs”^”3110”?
A.  A value
B.  An expression
C.  Both a value and an expression
D.  Neither a value nor an expression
E.  (I’m lost)

Addition expressions

•  Syntax:
 e1 + e2

•  Type-checking:

 If e1 and e2 have type int,
 then e1 + e2 has type int

•  Evaluation:
 If e1 evaluates to v1 and e2 evaluates to v2,
 then e1 + e2 evaluates to sum of v1 and v2

Other expressions

Less-than expressions
– Syntax: e1 < e2
– Type-checking: if e1 has type int and e2 has type
int then e1<e2 has type bool

– Evaluation: if e1 evaluates to v1, and e2 to v2,
then e1<e2 evaluates to true if v1 is a smaller
integer than v2, otherwise e1<e2 evaluates to
false

Other expressions

Conditional expressions
– Syntax: if e1 then e2 else e3
– Type-checking: if e1 has type bool and, for some

type t, both e2 and e3 have type t, then if e1
then e2 else e3 has type t

– Evaluation:
•  if e1 evaluates to true , then if e1 then e2
else e3 evaluates to whatever e2 evaluates to.
•  If e1 evaluates to false , then if e1 then e2
else e3 evaluates to whatever e3 evaluates to.

Some shorthand notation

•  Instead of “has type”, we’ll write a colon
– That’s what OCaml does anyway
–  “if e1 : int and e2 : int then e1<e2:bool”

•  Instead of “evaluates to”, we’ll write long right arrow
– No notion of this in OCaml syntax
–  “if e1-->v1, and e2-->v2,

then e1<e2-->true if v1 is a smaller integer than v2,
otherwise e1<e2--> false”

Evaluation

Execution of an OCaml program is evaluation:
–  Each step of execution involves rewriting (aka reducing) an

expression into a simpler expression
– Until reaches a value

– That value is the result of the execution

E.g.
– (1+2)*3 --> 3*3 --> 9
– if true then e1 else e2 --> e1 --> ?
– if false then e1 else e2 --> e2 --> ?

Let expressions

•  Simplified syntax:
 let x = e1 in e2
•  Type-checking:

If e1:t1, and if e2:t2 under the assumption that
x:t1, then let x = e1 in e2 : t2

•  Evaluation: ???

Let expressions

let x = 1+4 in x*3
 --> let x = 5 in x*3
 --> 5*3
 --> 15

Let expressions

•  Simplified syntax:
 let x = e1 in e2
•  Type-checking:

If e1:t1, and if e2:t2 under the assumption that
x:t1, then let x = e1 in e2 : t2

•  Evaluation:
–  Evaluate e1-->v1
–  Substitute v1 for x in e2 (tricky!).

Name that expression e2’.
–  Evaluate e2’ to v
–  Result of evaluation is v

Let expressions

Multiple variable bindings of the same name is usually
bad idiom (and darn confusing)

let x = 5
in ((let x = 6 in x) + x)

•  By the end of week 3, we’ll be able to explain exactly

how this evaluates
•  Temptation to think of rebinding as “assignment in

Java.” It’s not the same. Avoid that trap!

Let expressions in REPL

Syntax:
 let x = e
–  Implicitly, “in rest of what you type”

 let a=“zar” in
 let b=“doz” in
 let c=a^b in…

OCaml	
 understands	
 as	
 E.g.,	
 you	
 type:	

 let a=“zar”
 let b=“doz”
 let c=a^b

Registration

•  The course is full. Yay!
•  I can’t add anybody now. Boo.
•  If you (still) want in:
– Keep attending and doing problem sets
– Don’t stop trying to add the course

– Email Course Administrator with your full name and
NetID

– You will be placed in “Waiting Set”. NO PROMISES.

Upcoming events

•  PS 0 is out now
•  No recitations on Monday or Tuesday next week
•  Office hours and consulting start next week;

times and places TBA

Syntax is boring. This isn’t.

THIS IS 3110

