CS 3110

Lecture 19: Logic
To Truth through Proof

Prof. Clarkson Fall 2014

Today's music: Theme from Sherlock

Review

Current topic:

- How to reason about correctness of code
- Last week: informal arguments

Today:

- Logic
- Necessary step on our way to having machinechecked proofs of correctness

Question #1

What is your background in logic?

- A. I've never studied any formal logic AFAIK.
- B. I saw a little bit in CS 2800.
- C. I've taken a CS logic class.
- D. I've taken a math logic class.
- E. I've taken a philosophy logic class.

A biased history of logic

- Originated in philosophy
- Mathematicians became interested in late 1800s and early 1900s
 - goal: formalize mathematical reasoning
 - impossible: Kurt Gödel
- Computer scientists found many applications in the late 20th century
 - AI: formalize reasoning of robots, agents
 - Theorem proving: verify mathematical theorems, even discover new theorems
 - Verification: prove correctness of programs!

A biased perspective on logic

- A logic is a programming language for expressing reasoning about evidence
 - Like how OCaml is a programming language for expressing computation on data (ints, bools, etc.)
 - Data and evidence are analogous
 - Computation and reasoning are analagous
- Like any PL, a logic has
 - syntax
 - dynamic semantics (evaluation rules) -- omitted here
 - static semantics (type checking)

A logic: IPC

Syntax:

```
f ::= P | f1 /\ f2 | f1 \/ f2 | f1 \/ f2 | f1 \/ f2
```

- **f** is a meta-variable for formulae
- P is a meta-variable for propositions
 - We'll use any capital letter for propositions
 - except: true and false are also propositions

A logic: IPC

Syntax:

```
f ::= P | f1 /\ f2 | f1 \/ f2
| f1 => f2 | ~f
```

- /\ is logical and (aka conjunction)
- \/ is logical or (aka disjunction)
- => is logical implication
- ~ is logical negation
 - actually syntactic sugar: ~f means f => false

A logic: IPC

Syntax:

```
f ::= P | f1 /\ f2 | f1 \/ f2
| f1 => f2 | ~f
```

- Note on notation:
 - Slides use an ASCII syntax
 - Online notes use nicer math symbols
 - Either is fine, but be consistent
- IPC= Intuitionistic Propositional Calculus

Formal syntax

- Abstracts from ambiguities and details of natural language
- Examples:
 - Mammals have hair. Monkeys have hair. So monkeys are mammals.
 - Mammals have hair. Teddybears have hair. So teddybears are mammals.
 - $((M => H) /\ (X => H)) => (X => M)$
 - All are flawed reasoning!
 - (Want a way to distinguish flawed reasoning from correct reasoning...)
- A logic is a precise way to express structure of reasoning
- Just like a PL is a precise way to express structure of computation

Parts of syntax

- Connectives
 - and $/\,$ or $/\,$ implies =>, not \sim
 - like binary operators in a PL
 - create larger formulae (expressions) out of smaller
- Propositions
 - the basic "atoms" being reasoned about
 - like built-in data types (int, bool) in a PL
 - the simplest kind of formulae (expressions)

- If there is a snowstorm, then the roads will be closed.
- The roads are open.
- So there can't be a snowstorm.

- If there is a snowstorm, then the roads will be closed. S=>C
- The roads are open.
- So there can't be a snowstorm.

- If there is a snowstorm, then the roads will be closed. S=>C
- The roads are open.
- So there can't be a snowstorm.

- If there is a snowstorm, then the roads will be closed. S=>C
- The roads are open.
- So there can't be a snowstorm.

- If there is a snowstorm, then the roads will be closed. S=>C
- The roads are open.
- So there can't be a snowstorm. ~S
- *Implicit*: A road is either open or closed.

- If there is a snowstorm, then the roads will be closed. S=>C
- The roads are open.
- So there can't be a snowstorm. ~S
- Implicit: A road is either open or closed.

Combining them all:

Question #2

Which subformula does not appear in formalization? If there is a snowstorm then the roads will be closed. There is no snowstorm. So the roads must be open.

A.
$$S=>C$$

E.
$$O = > \sim C$$

Question #2

Which subformula does not appear in formalization? If there is a snowstorm then the roads will be closed. There is no snowstorm. So the roads must be open.

A.
$$S=>C$$

E.
$$O = > \sim C$$

Valid vs. invalid arguments

- How to separate them?
- What constitutes correct reasoning?
- Analogy: how did we distinguish "valid" from "invalid" programs?
 - Static semantics = type system
- So let's build a "type system" for valid arguments
 - Usually called a "proof system" or "deductive system"

Proof system for IPC

- Only one type: provable
 - e.g., (A / B) => A : provable
 - e.g., A => (A /\ B) is not provable so can't be
 given a type
- No reason to keep writing "f : provable" everywhere
 - the colon and word "provable" are too verbose
- Instead, write | f
 - pronounced as "provable f" or "f is provable"
 - or "derivable" instead of "provable"

Proof system for IPC

- We'll give proof rules for each syntactic form in IPC
- Just like we gave type-checking rules for each syntactic form in OCaml
 - -5: int
 - fun x -> e : ta-> tb if e: tb under
 assumption x: ta

Proof system for IPC

- We'll give introduction and elimination rules for each form
- Just like we gave rules for building and accessing pieces of data in OCaml

```
- (e1,e2) : a*b if e1:a and e2:b
-fst e : a if e : a*b
```

All rules will be based on evidence for each form...

Evidence for /\

Q: What constitutes evidence for f1 / f2?

A: Evidence for both £1 and £2, individually

so evidence for **f1**/**f2** is really a **pair** of the evidence for **f1** and the evidence for **f2**...

Proof rules for /\

- if | f1 and | f2 then | f1 /\ f2
 - introduction rule: shows how to build/introduce a formula out of smaller pieces
 - intuition: if you have evidence for £1 and evidence for £2, then you can combine those pieces of evidence to get evidence for £1 /\ £2

Proof rules for /\

- if | f1 /\ f2 then | f1
- if | f1 /\ f2 then | f2
 - elimination rules: show how to access smaller
 formulae out of larger, i.e., eliminate parts of formulae
 - intuition: if you have evidence for £1 /\ £2, then you can break apart that to get evidence for £1 individually, likewise for £2
 - further intuition: these rules are really just fst and snd

Evidence for =>

Q: What constitutes evidence for f1=>f2?

A: A way to transform evidence for **£1** into evidence for **£2**.

So evidence for **f1=>f2** is really a **function** that transforms evidence for **f1** into evidence for **f2**...

Proof rules for =>

- if |-f| and |-f| => g then |-g|
 - traditionally called *modus ponens*: "way that affirms"
 - elimination rule
 - intuition: if you have evidence for f, and you have a way of transforming evidence for f into evidence for g, then you have evidence for g
 - further intuition: this rule is really just function application

Proof rules for =>

- if under the assumption | f we can conclude
 | g, then | f => g
 - introduction rule
 - intuition: the way you reached that conclusion must be a way of transforming evidence for f into evidence for g, so you have evidence for f=>g
 - further intuition: this rule is really just anonymous function definition
 - hypothetical reasoning: "if I assume X, then I can conclude Y."

Notation for assumptions

- f | g means "under the assumption that f is provable, it holds that g is provable"
- So instead of:

```
if under the assumption | - f we can conclude | - g,
then | - f => g
we can write:
  if f | - g then | - f => g
```

- Generalize to entire set of assumptions: F | g means "under the assumption that all formulas in set F are provable, it holds that g is provable"
 - Write comma instead of set union: \mathbf{F} , \mathbf{f} means $\mathbf{F} \cup \{\mathbf{f}\}$

Revised proof rules

Adding assumptions to all rules so far:

```
if F |- f1 and F |- f2
then F |- f1 /\ f2
if F |- f1 /\ f2 then F |- f1
if F |- f1 /\ f2 then F |- f2
if F |- f and F |- f => g then F |- g
if F, f |- g then F |- f => g
```

Proof rules for assumptions

- f |- f
 - Intuition: if you have assumed that you have evidence for f, then you can proceed as though you have evidence for f
 - This rule is an *axiom*: it has no premises
- if F | f then F, g | f
 - Intuition: if assuming F is enough to derive evidence for
 f, then additionally assuming g makes no difference
 - This rule is called weakening: assuming more weakens the claim

A proof

Let's show
$$| - (A => (B => A))$$

Rule name	Rule
/\ intro	if \mathbf{F} - $\mathbf{f1}$ and \mathbf{F} - $\mathbf{f2}$ then \mathbf{F} - $\mathbf{f1}$ /\ $\mathbf{f2}$
∕\ elim L	if F - f1 /\ f2 then F - f1
∕\ elim R	if F - f1 /\ f2 then F - f2
=> elim	if $F \mid -f$ and $F \mid -f => g$ then $F \mid -g$
=> intro	if F , f - g then F - f => g
assump	f - f
weak	if F - f then F, g - f

A proof

Let's show
$$|-(A => (B => A))$$

- 1.A | A by assumption rule
- 2.A,B | A by (1) and weakening rule
- **3.A** |-B| => A by (2) and => introduction rule
- **4.** | **A** => **(B** => **A)** by (3) and => introduction rule

Proof structure

- Each step numbered
- Each step derives one new formula from previous step(s) and from named rule
- At each rule application, all the *premises* of a rule must already have been derived. Get to add *conclusion* of rule as new numbered step.
- Final step is the formula we want to prove, with no assumptions

A graphical notation: proof trees

Proof structure

- Goal formula is at root of tree (bottom)
- Each node in tree is a formula
 - i.e., a numbered step from linear form
- Each edge in tree is labeled by rule name
 - i.e., a justification from linear form
- If rule has no premises, there's an "empty" node at top
 - i.e., an axiom

That proof as an OCaml program

let t
$$(a:'a)$$
 $(b:'b)$: 'a = a

How to think about this program:

t is a function that takes in evidence for 'a, evidence for 'b, and returns the evidence for 'a

What is its type?

What is the formula we proved?

$$A \Rightarrow (B \Rightarrow A)$$

Programs and Proofs

- We were able to write a program whose type is the very formula we were trying to prove
- That program is an *evidence transformer*: it manipulates input evidence to construct output evidence of the right type
- This correspondence between
 - programs and proofs
 - types and formulae goes very, very deep.
- Known as the Curry-Howard isomorphism

Another proof

Let's show $|-A| => (B| => (A/\B))$.

Rule name	Rule
/\ intro	if \mathbf{F} - $\mathbf{f1}$ and \mathbf{F} - $\mathbf{f2}$ then \mathbf{F} - $\mathbf{f1}$ /\ $\mathbf{f2}$
∕\ elim L	if F - f1 /\ f2 then F - f1
∕\ elim R	if F - f1 /\ f2 then F - f2
=> elim	if $F \mid -f$ and $F \mid -f => g$ then $F \mid -g$
=> intro	if F , f - g then F - f => g
assump	f - f
weak	if F - f then F, g - f

Another proof: linear form

```
Let's show |-A| => (B| => (A/\B)).
```

- 1. A | A by assumption rule
- 2. A, B | A by weakening rule
- 3. B | B by assumption rule
- **4.A**,**B** | **B** by weakening rule
- **5.A**, B $|-A|\setminus B$ by (2), (4), and $|-A|\setminus B$ introduction rule
- 6. A |-B| = (A/B) by (5) and = introduction rule
- 7. $|-A| \Rightarrow (B| \Rightarrow (A/\setminus B))$ by (6) and => introduction rule

Another proof: tree form

As an OCaml program

How to think about this program:

pair is a function that takes in evidence for 'a, evidence for 'b, and returns the pair containing both pieces of evidence

What is its type?

What is the formula we proved?

$$A \Rightarrow (B \Rightarrow (A / B))$$

Please hold still for 1 more minute

WRAP-UP FOR TODAY

Upcoming events

- PS5 checkins this week
- Clarkson office hour today cancelled; moved to tomorrow
- Thursday: Guest lecture by Yaron Minsky (Cornell PhD) from Jane Street on "OCaml in the Real World"

This is logical.

THIS IS 3110