
Prof. Clarkson 
Fall 2014 

CS 3110 
Lecture 19:  Logic 

To Truth through Proof 

Today’s music:  Theme from Sherlock 



Review 

Current topic: 
•  How to reason about correctness of code 
•  Last week: informal arguments 

 

Today:  
•  Logic 

•  Necessary step on our way to having machine-
checked proofs of correctness 



Question #1 

What is your background in logic? 
A.  I've never studied any formal logic AFAIK. 
B.  I saw a little bit in CS 2800. 
C.  I've taken a CS logic class. 
D.  I've taken a math logic class. 
E.  I've taken a philosophy logic class. 



A biased history of logic 

•  Originated in philosophy 
•  Mathematicians became interested in late 1800s and 

early 1900s 
–  goal:  formalize mathematical reasoning 
–  impossible:  Kurt Gödel 

•  Computer scientists found many applications in the 
late 20th century 
– AI: formalize reasoning of robots, agents 
– Theorem proving:  verify mathematical theorems, even 

discover new theorems 
– Verification:  prove correctness of programs! 



A biased perspective on logic 

•  A logic is a programming language for expressing 
reasoning about evidence 
–  Like how OCaml is a programming language for 

expressing computation on data (ints, bools, etc.) 
– Data and evidence are analogous 
– Computation and reasoning are analagous 

•  Like any PL, a logic has 
–  syntax 
–  dynamic semantics (evaluation rules)  --omitted here 
–  static semantics (type checking) 



A logic:  IPC 

Syntax: 
 f ::= P | f1 /\ f2 | f1 \/ f2  

       | f1 => f2 | ~f 
 
•  f is a meta-variable for formulae 
•  P is a meta-variable for propositions 
– We'll use any capital letter for propositions 
– except:  true and false are also propositions 



A logic:  IPC 

Syntax: 
 f ::= P | f1 /\ f2 | f1 \/ f2  

       | f1 => f2 | ~f 
 
•  /\ is logical and (aka conjunction) 
•  \/ is logical or (aka disjunction) 
•  => is logical implication 
•  ~ is logical negation 
–  actually syntactic sugar:  ~f means f => false 



A logic:  IPC 

Syntax: 
 f ::= P | f1 /\ f2 | f1 \/ f2  

       | f1 => f2 | ~f 

•  Note on notation:  
–  Slides use an ASCII syntax 
– Online notes use nicer math symbols 
–  Either is fine, but be consistent 

•  IPC= Intuitionistic Propositional Calculus 



Formal syntax 

•  Abstracts from ambiguities and details of natural language 
•  Examples: 
–  Mammals have hair.  Monkeys have hair.  So monkeys are 

mammals. 
–  Mammals have hair.  Teddybears have hair.  So teddybears are 

mammals. 
–  ((M => H) /\ (X => H)) => (X => M) 
–  All are flawed reasoning!   

•  (Want a way to distinguish flawed reasoning from correct reasoning...) 

•  A logic is a precise way to express structure of reasoning 
•  Just like a PL is a precise way to express structure of 

computation 



Parts of syntax 

•  Connectives  
– and /\, or \/, implies =>, not ~ 
–  like binary operators in a PL 

– create larger formulae (expressions) out of smaller 

•  Propositions 
–  the basic "atoms" being reasoned about 
–  like built-in data types (int, bool) in a PL 

–  the simplest kind of formulae (expressions) 



Formalization of an argument 

•  If there is a snowstorm, then the roads will be 
closed. 

•  The roads are open. 
•  So there can't be a snowstorm. 
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Formalization of an argument 

•  If there is a snowstorm, then the roads will be 
closed.   S=>C 

•  The roads are open.   O 
•  So there can't be a snowstorm.    ~S 
•  Implicit:  A road is either open or closed.   
O=>~C /\ C=>~O 

•  Combining them all: 
 ((S=>C) /\ O /\ ((O=>~C)  

    /\ (C=>~O))) => ~S 
 



Question #2 

Which subformula does not appear in formalization? 
If there is a snowstorm then the roads will be closed.  
There is no snowstorm.  So the roads must be open. 
 
A.  S=>C 
B.  ~S 
C.  C=>S 
D.  O 
E.  O=>~C 
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Valid vs. invalid arguments 

•  How to separate them? 
•  What constitutes correct reasoning? 
•  Analogy:  how did we distinguish "valid" from 

"invalid" programs? 
– Static semantics = type system 

•  So let's build a "type system" for valid arguments 
– Usually called a "proof system" or "deductive system" 



Proof system for IPC 

•  Only one type:  provable 
–  e.g., (A /\ B) => A : provable 
–  e.g., A => (A /\ B) is not provable so can't be 

given a type 

•  No reason to keep writing "f : provable" 
everywhere 
–  the colon and word "provable" are too verbose 

•  Instead, write |- f 
–  pronounced as "provable f" or "f is provable" 
–  or "derivable" instead of "provable" 



Proof system for IPC 

•  We'll give proof rules for each syntactic form in 
IPC 

•  Just like we gave type-checking rules for each 
syntactic form in OCaml 
– 5 : int 
– fun x -> e : ta-> tb if e:tb under 

assumption x:ta 



Proof system for IPC 

•  We'll give introduction and elimination rules for 
each form 

•  Just like we gave rules for building and accessing 
pieces of data in OCaml 
– (e1,e2) : a*b if e1:a and e2:b 
– fst e : a if e : a*b 

All rules will be based on evidence for each form... 



Evidence for /\ 

Q:  What constitutes evidence for f1 /\ f2? 
A:  Evidence for both f1 and f2, individually 
 
so evidence for f1/\f2 is really a pair of the 
evidence for f1 and the evidence for f2... 



Proof rules for /\ 

•  if |- f1 and |- f2 then |- f1 /\ f2 
–  introduction rule: shows how to build/introduce a 

formula out of smaller pieces 

–  intuition:  if you have evidence for f1 and evidence 
for f2, then you can combine those pieces of 
evidence to get evidence for f1 /\ f2 

 



Proof rules for /\ 

•  if |- f1 /\ f2 then |- f1 
•  if |- f1 /\ f2 then |- f2 
– elimination rules:  show how to access smaller 

formulae out of larger, i.e., eliminate parts of formulae 

–  intuition:  if you have evidence for f1 /\ f2, then 
you can break apart that to get evidence for f1 
individually, likewise for f2 

–  further intuition:  these rules are really just fst and 
snd 

 



Evidence for => 

Q:  What constitutes evidence for f1=>f2? 
A:  A way to transform evidence for f1 into 
evidence for f2. 
 
So evidence for f1=>f2 is really a function that 
transforms evidence for f1 into evidence for f2... 



Proof rules for => 

•  if |- f and |- f => g then |- g 
–  traditionally called modus ponens:  "way that affirms" 
– elimination rule 

–  intuition:  if you have evidence for f, and you have a 
way of transforming evidence for f into evidence for 
g, then you have evidence for g 

–  further intuition:  this rule is really just function 
application 



Proof rules for => 

•  if under the assumption |- f we can conclude 
|- g, then |- f => g 
–  introduction rule 
–  intuition:  the way you reached that conclusion 

must be a way of transforming evidence for f into 
evidence for g, so you have evidence for f=>g 

–  further intuition:  this rule is really just anonymous 
function definition 

– hypothetical reasoning:  "if I assume X, then I can 
conclude Y." 



Notation for assumptions 

•  f |- g means "under the assumption that f is provable, it 
holds that g is provable" 

 
•  So instead of: 

 if under the assumption |- f we can conclude |- g,   
 then |- f => g 

 we can write: 
 if f |- g then |- f => g 

 
•  Generalize to entire set of assumptions:  F |- g means 

"under the assumption that all formulas in set F are provable, 
it holds that g is provable" 
–  Write comma instead of set union:  F, f means F ∪ {f} 



Revised proof rules 

Adding assumptions to all rules so far: 
•  if F |- f1 and F |- f2  

then F |- f1 /\ f2 
•  if F |- f1 /\ f2 then F |- f1 
•  if F |- f1 /\ f2 then F |- f2 
•  if F |- f and F |- f => g then F |- g 
•  if F, f |- g then F |- f => g 

 



Proof rules for assumptions 

•  f |- f 
–  Intuition:  if you have assumed that you have evidence for 
f, then you can proceed as though you have evidence for 
f 

– This rule is an axiom:  it has no premises 

•  if F |- f then F, g |- f 
–  Intuition:  if assuming F is enough to derive evidence for 
f, then additionally assuming g makes no difference 

– This rule is called weakening:  assuming more weakens the 
claim 



A proof 

Let's show |- (A => (B => A)) 
 
 Rule	
  name	
   Rule	
  

/\	
  intro	
   if	
  F |- f1 and	
  F |- f2 then	
  F |- f1 /\ f2 

/\	
  elim	
  L	
   if	
  F |- f1 /\ f2 then	
  F |- f1 

/\	
  elim	
  R	
   if	
  F |- f1 /\ f2 then	
  F |- f2	
  

=>	
  elim	
   if	
  F |- f and	
  F |- f => g then	
  F |- g	
  

=>	
  intro	
   if	
  F, f |- g then	
  F |- f => g 

assump	
   f |- f 

weak	
   if	
  F |- f then	
  F, g |- f	
  



A proof 

Let's show |- (A => (B => A)) 
 
1.  A |- A by assumption rule 
2.  A,B |- A by (1) and weakening rule 
3.  A |- B => A by (2) and => introduction 

rule 

4.  |- A => (B => A) by (3) and => 
introduction rule 

 
 



Proof structure 

•  Each step numbered 
•  Each step derives one new formula from previous 

step(s) and from named rule 
•  At each rule application, all the premises of a rule 

must already have been derived.  Get to add 
conclusion of rule as new numbered step. 

•  Final step is the formula we want to prove, with 
no assumptions 



A graphical notation: proof trees 

|- (A => (B => A)) 

A |- B => A  

A,B |- A  

A |- A  

=> intro. 

=> intro. 

weak. 

assump. 



Proof structure 

•  Goal formula is at root of tree (bottom) 
•  Each node in tree is a formula  
–  i.e., a numbered step from linear form 

•  Each edge in tree is labeled by rule name 
–  i.e., a justification from linear form 

•  If rule has no premises, there's an "empty" node 
at top 
–  i.e., an axiom 



That proof as an OCaml program 

let t (a:'a) (b:'b) : 'a = a 
 
How to think about this program: 
 t is a function that takes in evidence for 'a, evidence for 
 'b, and returns the evidence for 'a 

What is its type? 
'a -> ('b -> 'a) 
 
What is the formula we proved? 
A => (B => A) 



Programs and Proofs 

•  We were able to write a program whose type is the very 
formula we were trying to prove 

•  That program is an evidence transformer:  it manipulates input 
evidence to construct output evidence of the right type 

•  This correspondence between  
–  programs and proofs 
–  types and formulae 
goes very, very deep. 

•  Known as the Curry-Howard isomorphism 



Another proof 

Let's show |- A => (B => (A/\B)). 
 
 Rule	
  name	
   Rule	
  

/\	
  intro	
   if	
  F |- f1 and	
  F |- f2 then	
  F |- f1 /\ f2 

/\	
  elim	
  L	
   if	
  F |- f1 /\ f2 then	
  F |- f1 

/\	
  elim	
  R	
   if	
  F |- f1 /\ f2 then	
  F |- f2	
  

=>	
  elim	
   if	
  F |- f and	
  F |- f => g then	
  F |- g	
  

=>	
  intro	
   if	
  F, f |- g then	
  F |- f => g 

assump	
   f |- f 

weak	
   if	
  F |- f then	
  F, g |- f	
  



Another proof: linear form 

Let's show |- A => (B => (A/\B)). 
 
1.  A |- A by assumption rule 
2.  A,B |- A by weakening rule 
3.  B |- B by assumption rule 
4.  A,B |- B by weakening rule 
5.  A,B |- A/\B by (2), (4), and /\ introduction rule 
6.  A |- B => (A/\B) by (5) and  => introduction 

rule 
7.  |- A => (B => (A/\B)) by (6) and  => 

introduction rule 
 
 



Another proof:  tree form 

|- A => (B => (A/\B)) 

A |- B => (A/\B)  

A,B |- A /\ B  

A,B |- A  

=> intro 

=> intro 

/\ intro 

assump 

A |- A  
weak 

A,B |- B  

assump 

B |- B  
weak 



As an OCaml program 

let pair (a:'a) (b:'b) : ('a*'b) 
  = (a,b) 
 
How to think about this program: 
pair is a function that takes in evidence for 'a, evidence for 'b, 
and returns the pair containing both pieces of evidence 
 
What is its type? 
'a -> ('b -> ('a * 'b)) 
 
What is the formula we proved? 
A => (B => (A /\ B)) 



WRAP-UP FOR TODAY 
Please hold still for 1 more minute 



Upcoming events 

•  PS5 checkins this week 
•  Clarkson office hour today cancelled; moved to 

tomorrow 
•  Thursday:  Guest lecture by Yaron Minsky 

(Cornell PhD) from Jane Street on "OCaml in the 
Real World" 

 
This is logical. 

THIS IS 3110 


