
Prof. Clarkson
Fall 2014

CS 3110
Lecture 19: Logic

To Truth through Proof

Today’s music: Theme from Sherlock

Review

Current topic:
•  How to reason about correctness of code
•  Last week: informal arguments

Today:
•  Logic

•  Necessary step on our way to having machine-
checked proofs of correctness

Question #1

What is your background in logic?
A.  I've never studied any formal logic AFAIK.
B.  I saw a little bit in CS 2800.
C.  I've taken a CS logic class.
D.  I've taken a math logic class.
E.  I've taken a philosophy logic class.

A biased history of logic

•  Originated in philosophy
•  Mathematicians became interested in late 1800s and

early 1900s
–  goal: formalize mathematical reasoning
–  impossible: Kurt Gödel

•  Computer scientists found many applications in the
late 20th century
– AI: formalize reasoning of robots, agents
– Theorem proving: verify mathematical theorems, even

discover new theorems
– Verification: prove correctness of programs!

A biased perspective on logic

•  A logic is a programming language for expressing
reasoning about evidence
–  Like how OCaml is a programming language for

expressing computation on data (ints, bools, etc.)
– Data and evidence are analogous
– Computation and reasoning are analagous

•  Like any PL, a logic has
–  syntax
–  dynamic semantics (evaluation rules) --omitted here
–  static semantics (type checking)

A logic: IPC

Syntax:
 f ::= P | f1 /\ f2 | f1 \/ f2

 | f1 => f2 | ~f

•  f is a meta-variable for formulae
•  P is a meta-variable for propositions
– We'll use any capital letter for propositions
– except: true and false are also propositions

A logic: IPC

Syntax:
 f ::= P | f1 /\ f2 | f1 \/ f2

 | f1 => f2 | ~f

•  /\ is logical and (aka conjunction)
•  \/ is logical or (aka disjunction)
•  => is logical implication
•  ~ is logical negation
–  actually syntactic sugar: ~f means f => false

A logic: IPC

Syntax:
 f ::= P | f1 /\ f2 | f1 \/ f2

 | f1 => f2 | ~f

•  Note on notation:
–  Slides use an ASCII syntax
– Online notes use nicer math symbols
–  Either is fine, but be consistent

•  IPC= Intuitionistic Propositional Calculus

Formal syntax

•  Abstracts from ambiguities and details of natural language
•  Examples:
–  Mammals have hair. Monkeys have hair. So monkeys are

mammals.
–  Mammals have hair. Teddybears have hair. So teddybears are

mammals.
–  ((M => H) /\ (X => H)) => (X => M)
–  All are flawed reasoning!

•  (Want a way to distinguish flawed reasoning from correct reasoning...)

•  A logic is a precise way to express structure of reasoning
•  Just like a PL is a precise way to express structure of

computation

Parts of syntax

•  Connectives
– and /\, or \/, implies =>, not ~
–  like binary operators in a PL

– create larger formulae (expressions) out of smaller

•  Propositions
–  the basic "atoms" being reasoned about
–  like built-in data types (int, bool) in a PL

–  the simplest kind of formulae (expressions)

Formalization of an argument

•  If there is a snowstorm, then the roads will be
closed.

•  The roads are open.
•  So there can't be a snowstorm.

Formalization of an argument

•  If there is a snowstorm, then the roads will be
closed. S=>C

•  The roads are open.
•  So there can't be a snowstorm.

Formalization of an argument

•  If there is a snowstorm, then the roads will be
closed. S=>C

•  The roads are open. O
•  So there can't be a snowstorm.

Formalization of an argument

•  If there is a snowstorm, then the roads will be
closed. S=>C

•  The roads are open. O
•  So there can't be a snowstorm. ~S

Formalization of an argument

•  If there is a snowstorm, then the roads will be
closed. S=>C

•  The roads are open. O
•  So there can't be a snowstorm. ~S
•  Implicit: A road is either open or closed.
O=>~C /\ C=>~O

Formalization of an argument

•  If there is a snowstorm, then the roads will be
closed. S=>C

•  The roads are open. O
•  So there can't be a snowstorm. ~S
•  Implicit: A road is either open or closed.
O=>~C /\ C=>~O

•  Combining them all:
 ((S=>C) /\ O /\ ((O=>~C)

 /\ (C=>~O))) => ~S

Question #2

Which subformula does not appear in formalization?
If there is a snowstorm then the roads will be closed.
There is no snowstorm. So the roads must be open.

A.  S=>C
B.  ~S
C.  C=>S
D.  O
E.  O=>~C

Question #2

Which subformula does not appear in formalization?
If there is a snowstorm then the roads will be closed.
There is no snowstorm. So the roads must be open.

A.  S=>C
B.  ~S
C.  C=>S
D.  O
E.  O=>~C

Valid vs. invalid arguments

•  How to separate them?
•  What constitutes correct reasoning?
•  Analogy: how did we distinguish "valid" from

"invalid" programs?
– Static semantics = type system

•  So let's build a "type system" for valid arguments
– Usually called a "proof system" or "deductive system"

Proof system for IPC

•  Only one type: provable
–  e.g., (A /\ B) => A : provable
–  e.g., A => (A /\ B) is not provable so can't be

given a type

•  No reason to keep writing "f : provable"
everywhere
–  the colon and word "provable" are too verbose

•  Instead, write |- f
–  pronounced as "provable f" or "f is provable"
–  or "derivable" instead of "provable"

Proof system for IPC

•  We'll give proof rules for each syntactic form in
IPC

•  Just like we gave type-checking rules for each
syntactic form in OCaml
– 5 : int
– fun x -> e : ta-> tb if e:tb under

assumption x:ta

Proof system for IPC

•  We'll give introduction and elimination rules for
each form

•  Just like we gave rules for building and accessing
pieces of data in OCaml
– (e1,e2) : a*b if e1:a and e2:b
– fst e : a if e : a*b

All rules will be based on evidence for each form...

Evidence for /\

Q: What constitutes evidence for f1 /\ f2?
A: Evidence for both f1 and f2, individually

so evidence for f1/\f2 is really a pair of the
evidence for f1 and the evidence for f2...

Proof rules for /\

•  if |- f1 and |- f2 then |- f1 /\ f2
–  introduction rule: shows how to build/introduce a

formula out of smaller pieces

–  intuition: if you have evidence for f1 and evidence
for f2, then you can combine those pieces of
evidence to get evidence for f1 /\ f2

Proof rules for /\

•  if |- f1 /\ f2 then |- f1
•  if |- f1 /\ f2 then |- f2
– elimination rules: show how to access smaller

formulae out of larger, i.e., eliminate parts of formulae

–  intuition: if you have evidence for f1 /\ f2, then
you can break apart that to get evidence for f1
individually, likewise for f2

–  further intuition: these rules are really just fst and
snd

Evidence for =>

Q: What constitutes evidence for f1=>f2?
A: A way to transform evidence for f1 into
evidence for f2.

So evidence for f1=>f2 is really a function that
transforms evidence for f1 into evidence for f2...

Proof rules for =>

•  if |- f and |- f => g then |- g
–  traditionally called modus ponens: "way that affirms"
– elimination rule

–  intuition: if you have evidence for f, and you have a
way of transforming evidence for f into evidence for
g, then you have evidence for g

–  further intuition: this rule is really just function
application

Proof rules for =>

•  if under the assumption |- f we can conclude
|- g, then |- f => g
–  introduction rule
–  intuition: the way you reached that conclusion

must be a way of transforming evidence for f into
evidence for g, so you have evidence for f=>g

–  further intuition: this rule is really just anonymous
function definition

– hypothetical reasoning: "if I assume X, then I can
conclude Y."

Notation for assumptions

•  f |- g means "under the assumption that f is provable, it
holds that g is provable"

•  So instead of:

 if under the assumption |- f we can conclude |- g,
 then |- f => g

 we can write:
 if f |- g then |- f => g

•  Generalize to entire set of assumptions: F |- g means

"under the assumption that all formulas in set F are provable,
it holds that g is provable"
–  Write comma instead of set union: F, f means F ∪ {f}

Revised proof rules

Adding assumptions to all rules so far:
•  if F |- f1 and F |- f2

then F |- f1 /\ f2
•  if F |- f1 /\ f2 then F |- f1
•  if F |- f1 /\ f2 then F |- f2
•  if F |- f and F |- f => g then F |- g
•  if F, f |- g then F |- f => g

Proof rules for assumptions

•  f |- f
–  Intuition: if you have assumed that you have evidence for
f, then you can proceed as though you have evidence for
f

– This rule is an axiom: it has no premises

•  if F |- f then F, g |- f
–  Intuition: if assuming F is enough to derive evidence for
f, then additionally assuming g makes no difference

– This rule is called weakening: assuming more weakens the
claim

A proof

Let's show |- (A => (B => A))

 Rule	
 name	
 Rule	

/\	
 intro	
 if	
 F |- f1 and	
 F |- f2 then	
 F |- f1 /\ f2

/\	
 elim	
 L	
 if	
 F |- f1 /\ f2 then	
 F |- f1

/\	
 elim	
 R	
 if	
 F |- f1 /\ f2 then	
 F |- f2	

=>	
 elim	
 if	
 F |- f and	
 F |- f => g then	
 F |- g	

=>	
 intro	
 if	
 F, f |- g then	
 F |- f => g

assump	
 f |- f

weak	
 if	
 F |- f then	
 F, g |- f	

A proof

Let's show |- (A => (B => A))

1.  A |- A by assumption rule
2.  A,B |- A by (1) and weakening rule
3.  A |- B => A by (2) and => introduction

rule

4.  |- A => (B => A) by (3) and =>
introduction rule

Proof structure

•  Each step numbered
•  Each step derives one new formula from previous

step(s) and from named rule
•  At each rule application, all the premises of a rule

must already have been derived. Get to add
conclusion of rule as new numbered step.

•  Final step is the formula we want to prove, with
no assumptions

A graphical notation: proof trees

|- (A => (B => A))

A |- B => A

A,B |- A

A |- A

=> intro.

=> intro.

weak.

assump.

Proof structure

•  Goal formula is at root of tree (bottom)
•  Each node in tree is a formula
–  i.e., a numbered step from linear form

•  Each edge in tree is labeled by rule name
–  i.e., a justification from linear form

•  If rule has no premises, there's an "empty" node
at top
–  i.e., an axiom

That proof as an OCaml program

let t (a:'a) (b:'b) : 'a = a

How to think about this program:
 t is a function that takes in evidence for 'a, evidence for
 'b, and returns the evidence for 'a

What is its type?
'a -> ('b -> 'a)

What is the formula we proved?
A => (B => A)

Programs and Proofs

•  We were able to write a program whose type is the very
formula we were trying to prove

•  That program is an evidence transformer: it manipulates input
evidence to construct output evidence of the right type

•  This correspondence between
–  programs and proofs
–  types and formulae
goes very, very deep.

•  Known as the Curry-Howard isomorphism

Another proof

Let's show |- A => (B => (A/\B)).

 Rule	
 name	
 Rule	

/\	
 intro	
 if	
 F |- f1 and	
 F |- f2 then	
 F |- f1 /\ f2

/\	
 elim	
 L	
 if	
 F |- f1 /\ f2 then	
 F |- f1

/\	
 elim	
 R	
 if	
 F |- f1 /\ f2 then	
 F |- f2	

=>	
 elim	
 if	
 F |- f and	
 F |- f => g then	
 F |- g	

=>	
 intro	
 if	
 F, f |- g then	
 F |- f => g

assump	
 f |- f

weak	
 if	
 F |- f then	
 F, g |- f	

Another proof: linear form

Let's show |- A => (B => (A/\B)).

1.  A |- A by assumption rule
2.  A,B |- A by weakening rule
3.  B |- B by assumption rule
4.  A,B |- B by weakening rule
5.  A,B |- A/\B by (2), (4), and /\ introduction rule
6.  A |- B => (A/\B) by (5) and => introduction

rule
7.  |- A => (B => (A/\B)) by (6) and =>

introduction rule

Another proof: tree form

|- A => (B => (A/\B))

A |- B => (A/\B)

A,B |- A /\ B

A,B |- A

=> intro

=> intro

/\ intro

assump

A |- A
weak

A,B |- B

assump

B |- B
weak

As an OCaml program

let pair (a:'a) (b:'b) : ('a*'b)
 = (a,b)

How to think about this program:
pair is a function that takes in evidence for 'a, evidence for 'b,
and returns the pair containing both pieces of evidence

What is its type?
'a -> ('b -> ('a * 'b))

What is the formula we proved?
A => (B => (A /\ B))

WRAP-UP FOR TODAY
Please hold still for 1 more minute

Upcoming events

•  PS5 checkins this week
•  Clarkson office hour today cancelled; moved to

tomorrow
•  Thursday: Guest lecture by Yaron Minsky

(Cornell PhD) from Jane Street on "OCaml in the
Real World"

This is logical.

THIS IS 3110

