
Prof. Clarkson
Fall 2014

CS 3110
Lecture 14: Static vs. dynamic checking

Today’s music: "Let's talk about sex" (Power Mix Instrumental) by Salt-n-Pepa

SPOILER: We won't.

Review

Course so far:
•  Introduction to functional programming
•  Modular programming

Next two weeks:
Advanced topics in functional programming
•  Dynamically-typed functional languages
•  Concurrency (Guest lectures: Prof. Foster)
•  Dependent types (Guest lecture: Prof. Constable)

Question #1

How much of PS4 have you finished?
A.  None
B.  About 25%
C.  About 50%
D.  About 75%
E.  I’m done!!!

PS4

Scheme3110:
– A new language, based on R5RS Scheme, a language

from the LISP family

– Like an "untyped" version of OCaml, but don't
confuse them

John McCarthy

5

(1927-2011)

Turing Award Winner (1971)
•  Invented the phrase "artificial intelligence"
•  Helped design ALGOL, a language that

influenced all modern imperative languages,
and was the first language with nested
functions and lexical scope

•  Designed LISP (LISt Processing) language, a
language that influenced all modern
functional languages; introduced garbage
collection

PS4

Scheme3110 interpreter:
– First, learn the language
– Then, design the interpreter based on starter code

– Only then should you start to code
– Problem is structured in stages

•  If you run out of time, complete early stages before later
stages

•  Build a test suite that tests each stage; run regression tests

•  Start now!

Let's talk about "untyped" languages...

•  Better name: "dynamically typed"
•  Type checking done dynamically, i.e., at run time
•  As opposed to statically, i.e., at compile time

Static vs. dynamic checking

•  A big, juicy, essential, topic about how to think about PLs
–  Controversial topic!
–  Conversation usually overrun with half-informed opinions L
–  Will consider reasonable arguments “for” and “against” in

second half of lecture

•  First need to understand the facts:
–  What static checking means
–  When static checking is done (and where it falls on a

continuum)
–  Why static checking is used
–  How much you can expect out of static checking

8

Question #2

Have you ever been involved in an argument about
typed-vs.-untyped (i.e., static vs. dynamically
checked) languages?

A.  Yes
B.  No

FACTS ABOUT
STATIC VS DYNAMIC CHECKING

WHAT: Static checking

•  Static checking is anything done to reject a
program...
– after it (successfully) parses but

– before it runs

•  How much and what static checking is done?
– That’s part of the language definition
– Third-party tools (Lint, FindBugs, etc.) can go beyond

that definition

11

Type checking

Type checking is a kind of static checking
– Approach is to give a type to each variable,

expression, etc.

– Purposes include preventing misuse of primitives
(e.g., 4/"hi") and avoiding run-time checking

– Dynamically-typed PLs (e.g., Python, JavaScript,
Scheme) do much less type checking
•  Maybe none, but the line is fuzzy and depends on exactly

what one means by "type checking"...

Question #3

Which is an example of static checking?
A.  Checking that only 7-bit ASCII characters appear in

the source code
B.  Checking that every left paren is matched by a right

paren
C.  Checking that all return values of a function have

the same type
D.  Checking that all pattern matches are exhaustive
E.  Checking that the program never causes a division

by zero error

Question #3

Which is an example of static checking?
A.  Checking that only 7-bit ASCII characters appear in

the source code // done before parsing
B.  Checking that every left paren is matched by a right

paren // done during parsing
C.  Checking that all return values of a function

have the same type
D.  Checking that all pattern matches are exhaustive
E.  Checking that the program never causes a division

by zero error // has to be done at run-time

Note: to some extent, depends on definition of "compile time" and "run time"

WHEN: A question of eagerness
•  Static checking & dynamic checking are two points (or maybe two

intervals) on a continuum

•  Silly example: Suppose we just want to prevent evaluating 3 / 0
–  Keystroke time: disallow it in the editor
–  Compile time: disallow it if seen in code
–  Link time: disallow it if seen in code that may be called to evaluate
main

–  Run time: disallow it right when we get to the division
–  Later: Instead of doing the division, return INF instead

•  Just like 3.0 /. 0.0 does in OCaml, and in every PL that implements IEEE
floating point standard

“Catching a bug before it matters”
is in inherent tension with

“Don’t report a bug that might not matter”

15

WHY: Purpose is prevention

Different languages prevent different things:
–  Java: prevents

•  casting to types other than supertypes or subtypes
•  missing field and method errors
•  accessing private fields, etc.

–  OCaml: prevents
•  inexhaustive pattern matches, etc.

–  SML: prevents
•  using = on anything other than equality types.

(But OCaml lets you use = on any two types)

Part of language design is deciding what is checked and
how…

16

Example: OCaml

OCaml static checking prevents these errors from ever
occurring at run-time:
•  Using arithmetic on a non-number
•  Trying to evaluate a function application e1 e2 where
e1 does not evaluate to a function

•  Having a non-Boolean between if and then
•  Using a variable that is not in the environment
•  Having a pattern-match with a redundant pattern
•  …

These are all standard goals for statically typed (functional)
languages

17

Example: OCaml

OCaml static checking does not prevent these
errors from ever occurring at run-time:
•  Exceptions (e.g., hd [])
•  An array-bounds error
•  Division-by-zero
Instead, these are detected at run-time

18

HOW MUCH:
Could all errors be prevented?
E.g., logic or algorithmic errors:
•  Reversing the branches of a conditional
•  Using + instead of –

Without a program specification, static checker can’t “read your
mind”
•  Dependent types prevent more errors (next week)
•  Program verification prevents even more errors (next month)
•  Provably impossible to prevent all errors (cf. undecidability in CS 4810)

...so static checking doesn't attempt to prevent all errors

...what would it mean for static checker to be correct?

Analogy: True and false positives

20

•  Airport security: wristwatch mistaken for weapon …false positive
•  Spam filter: desirable message is sent to spam folder …false positive
•  Quality control: broken toy ships from factory …false negative

In static checking:
•  Test is the static checker.
•  Patient is the program.
•  Disease is “doing bad thing X.”
•  Correctness is minimizing false positives and false negatives (CS 4110)

Test	
 says	
 you	
 don’t	
 have	

disease	

Test	
 says	
 you	
 do	
 have	

disease	

You	
 really	
 don’t	
 have	

disease	

True	
 nega4ve	
 False	
 posi3ve	

You	
 really	
 do	
 have	

disease	

False	
 nega3ve	
 True	
 posi4ve	

Alternative: Dynamic checking
•  If false positives and false negatives are a given,

maybe we should give up on static checking?
•  Not having to obey OCaml or Java’s typing rules

can be convenient
– Maybe arrays can hold anything
– Maybe everything is true except false and []
– Maybe don’t need to create a datatype just to pass

different types of data to a function
– …

•  Basis of many modern "scripting" languages, e.g.,
Python, Ruby, etc.

21

Example: Scheme3110

In OCaml, we might complain about false positives
at compile time.

In Scheme3110, we might complain about not
catching obvious errors at compile time*

22

(define f (lambda (y) (+ 4 #t)))

let f = fun y ->
 if true then 0 else (4 + true)

*although, you're building an interpreter, not a compiler

DISCUSSION OF
STATIC VS DYNAMIC CHECKING

Static vs. dynamic checking

•  We've stated a bunch of facts about static and
dynamic checking

•  Let's rationally consider arguments about which is
better

Remember: it's a spectrum; most languages do some
of each
•  Examples in OCaml and Scheme3110
–  Extensions to Scheme3110: number?, >, -
– All Scheme3110 examples here are valid R5RS Scheme

24

Question #4

Make a quick list of the main languages which
you've programmed in, and how much code you've
written in them.

A.  I've programmed more in statically-typed
languages.

B.  I've programmed more in dynamically-typed
languages.

Claim 1a: Dynamic is more convenient
Dynamic typing lets you build a heterogeneous list or return a
“number or a Boolean” without getting in your way

26

(define f (lambda (y)
 (if (> y 0) (+ y y) #t)))

type t = Int of int | Bool of bool (* "tags" *)

let f y = if y > 0 then Int(y+y) else Bool true

Claim 1b: Static is more convenient

Can assume data has the expected type without cluttering code
with dynamic checks or having run-time errors (possibly far from the
logical mistake)

27

(define cube (lambda (x) (* x x x)))
(cube #t) ; run-time error

let cube x = x * x * x

cube true (* doesn't type-check *)

(define cube (lambda (x)
 (if (number? x) (* x x x) #f)))
(cube #t) ; --> #f

Claim 2a: Static prevents useful
programs
Static type systems forbids programs that do nothing wrong, forcing
the programmer to "code around" the limitation

28

let f g = (g 7, g true) (* doesn't type-check *)
f (fun x -> (x,x))

type tost = (* The One Scheme Type *)
 | Int of int
 | Bool of bool
 | Cons of tost * tost
 | Fun of (tost -> tost)

let f g = Cons(g (Int 7), g (Bool true))
f (fun x -> Cons(x,x)) (* does type-check *)

Claim 2b: Dynamic allows useful
programs
But at the cost of tagging everything at run-time

29

(define f (lambda (g)
 (cons (g 7) (g #t))))
(f (lambda (x) (cons x x)))
; --> ((7 . 7) #t . #t)

(number? 7)
; --> #t

Claim 3a: Static catches bugs earlier

•  Static typing catches tons of simple bugs as soon as
you compile.

•  Since you know they are prevented, no need to unit
test for them

30

(define pow (lambda (x y)
 (if (equal? y 0) 1
 (* x (pow
 (cons x (- y 1))))))) ; run-time error

let rec pow x y = (* curried *)
 if y = 0
 then 1
 else x * pow (x,y-1) (* does not type-check *)

Claim 3b: Static catches only easy bugs

So you still have to unit test your functions, thus
finding "easy" bugs, too

31

(define wrong-pow (lambda (x y)
 (if (equal? y 0) 1
 (+ x (wrong-pow x (- y 1))))))

let rec wrong_pow x y =
 if y = 0
 then 1
 else x + wrong_pow x (y-1) (* oops *)

Claim 4a: Static typing is faster

The language implementation:
– Does not need to store tags (space, time)
– Does not need to check tags (time)

Your code:
– Does not need to check arguments and results
– Put tag tests just where needed

32

Claim 4b: Dynamic typing is faster

The language implementation:
– Can use optimization to remove some unnecessary

tags and tests

– Although hard (or impossible) in general, it is often
easier for the performance-critical parts of a program

Your code:
– Do not need to "code around" the type-system

limitations that lead to extra tagging

33

Claim 5a: Code reuse easier with
dynamic

By not requiring types, tags, etc., more code can
just be reused with data of different types
– e.g., great libraries for working with lists/arrays in

languages like Python and Ruby
– whereas Java and OCaml collections libraries are

often have very complicated static types

34

Claim 5b: Code reuse easier with static

•  If you use arrays to represent everything, you will
– confuse abstraction functions and
– get hard-to-debug errors

•  Use separate static types to keep data
abstractions separate
– Static types help avoid library misuse
– Modern type systems support code reuse with

features like generics and subtyping

35

So far
Considered 5 things you care about when writing code:
1.  Convenience
2.  Writing useful programs
3.  Finding bugs early
4.  Performance
5.  Code reuse

But we took the naïve view that software is developed by taking an existing
spec, coding it up, testing it, and declaring victory.

Reality:

–  Often do a lot of prototyping before you have a stable spec
–  Often do a lot of maintenance/evolution after version 1.0

36

Claim 6a: Dynamic better for
prototyping
•  Early on, you don't fully know
– what operations you need in data abstractions
– what constructors you need in datatypes
– what branches you need in pattern matches, etc.

•  So dynamic is a win!
– Dynamic lets "incomplete" programs run

•  Static typing loses because
– won't let you "try out" code without having all cases
–  you make premature commitments to data structures
–  you write a lot of code to appease the type-checker

•  code that you end up throwing away

37

Claim 6b: Static better for prototyping

What better way to document your evolving
decisions on data structures and code-cases than
with the type system?

Easy to put in temporary stubs as necessary, such as
 | _ => raise Unimplemented

38

Claim 7a: Dynamic better for
evolution

Can change code to be more permissive without
affecting old callers
–  Example: Take an int or a function instead of an int

39

let twice x = 2 * x

(* evolved *)
let twice x =
 match x with
 Int i > Int (2 * i)
 | Fun f -> Fun(fun y -> f (f y))

Claim 7a: Dynamic better for
evolution

Can change code to be more permissive without
affecting old callers
–  Example: Take an int or a function instead of an int

40

(define twice
 (lambda (x) (* 2 x)))

; evolved
(define twice (lambda (x)
 (if (number? x) (* 2 x)
 (lambda (y) (x (x y))))))

Claim 7a: Dynamic better for
evolution

Can change code to be more permissive without
affecting old callers
–  Example: Take an int or a function instead of an int
–  All OCaml clients must now use a constructor on

arguments and pattern-match on results

–  Existing Scheme3110 callers can be oblivious

41

Claim 7b: Static better for evolution

When we change type of data or code, the type-checker gives us a
"to-do" list of everything that must change

–  Avoids introducing bugs
–  The more of your spec that is in your types, the more the type-

checker lists what to change when your spec changes

Examples:
•  Changing the return type of a function
•  Adding a new constructor to a data type

–  Good reason not to use wildcard patterns

Counter-argument: The to-do list is mandatory, which makes
evolution in pieces a pain: can't "test what I've changed so far"

42

Conclusion:
Static vs. dynamic checking

•  Controversial topic!
•  There are real trade-offs here you should know

–  Enables rational discussion informed by facts
•  Simply debating "static vs. dynamic typing" isn't useful

–  It's a continuum; most languages have examples of both ends
–  "What should we enforce statically" makes more sense to debate

•  You get to experience examples of each:
–  Imperative: Python vs. Java
–  Functional: OCaml vs Scheme3110

•  Ideally would have flexible languages that allow best-of-both-worlds
–  Still an open and active area of research!

43

WRAP-UP FOR TODAY
Please hold still for 1 more minute

Prelim 1

•  If you have questions about what you missed,
talk to consultants or TAs

•  If after that you want to talk, come to my office
hours

•  I will hold an extra office hour today to
accommodate extra demand
– Office hours today: 2-4 pm

Upcoming events

•  PS4 is out, due in one week

This is controversial.

THIS IS 3110

APPENDIX:
SOUNDNESS AND COMPLETENESS

Correctness
Suppose a static checker is supposed to prevent X

•  A static checker is sound if it never accepts a program that,
when run with some input, does X
–  No false negatives: test never ignores disease

•  A static checker is complete if it never rejects a program
that, no matter what input it is run with, will not do X
–  No false positives: test never needlessly scares you

Usual goal in designing static checker is to be:
•  sound (so you can rely on it) but
•  not complete

48

True and false positives

49

•  Soundness = no false negatives
•  Completeness = no false positives

Soundness and completeness are always with
respect to a bad thing X

Type	
 system	
 accepts	

program	

Type	
 system	
 rejects	

program	

Program	
 doesn’t	
 do	
 X	
 True	
 nega4ve	
 False	
 posi3ve	

Program	
 does	
 do	
 X	
 False	
 nega3ve	
 True	
 posi4ve	

Incompleteness
OCaml rejects even though never divide by a string:

50

let f1 x = 4 / "hi"	
 	
 	
 (* but f1 never called *)

let f2 x = if true then 0 else 4 / "hi"

let f3 x = if x then 0 else 4 / "hi"
let x = f3 true

let f4 x = if x <= abs x then 0 else 4 / "hi"

let f5 x = 4 / x
let y = f5 (if true then 1 else "hi")

(no examples of unsoundness, because OCaml type system is sound)

Why incompleteness?
•  Almost anything "interesting" you might like to check statically is

undecidable: can't write an algorithm that always gives correct
answer
–  Will this function terminate on some input? On any input?
–  Will this function ever read or write a variable not in the environment?
–  Will this function divide an integer by a string?
–  Will this function divide by zero?

•  Undecidability is discussed in CS 4810

–  The inherent approximation of static checking is probably its most
important consequence

–  Can never build a static checker that always terminates, never has false
positives, and never has false negatives.

–  Must give up on one of those three

51

Why not give up on unsoundness?
We could! Static checker would have false negatives.

–  Program really does bad thing X but static checker says it doesn't

Two further choices:
1.  Make behavior unspecified when X happens?

–  including deleting your files, emailing your credit card number, setting the computer on fire...
–  Languages where this is the norm are called weakly typed (as opposed to strongly typed)
–  Weak typing is a poor name: Really about doing neither static nor dynamic checks
–  Best-known example of weak typing: C and C++

2.  Insert run-time checks as needed to prevent X from happening?
–  Many statically-typed languages do this when X is hard or impossible to detect statically

•  E.g., Java ClassCastException, ArrayStoreException, etc.
–  So many static checkers are neither sound nor complete (but they're still useful)
–  Or, could just give up on static checking and test everything dynamically, i.e., dynamic checking

52

Choice 1: Weak typing
Why define a language where there exist programs
that, by definition, must pass static checking but
then when run can set the computer on fire?

•  Ease of language implementation: Checks left to
the programmer

•  Performance: Dynamic checks take time
•  Lower level: Compiler does not insert information

like array sizes, so it cannot do the checks

 53

Weak typing leads to insecurity

•  Old now-much-rarer saying: “strong types are for weak minds”
–  Idea was humans will always be smarter than a type system (cf.

undecidability), so need to let them say “trust me”

•  Reality: humans are really bad at avoiding bugs
–  We need all the help we can get!
–  And type systems have gotten much more expressive (less

incomplete)

•  Reality check: 1 bug in a 30-million line OS written in C can
make the whole OS vulnerable
–  An important security vulnerability like this was probably

announced this week (because there is one almost every week)

54

Choice 2: Dynamic checking
Not having OCaml or Java’s rules can be convenient
–  Maybe arrays can hold anything
–  Maybe everything is true except false and []
–  Maybe don’t need to create a datatype just to pass different

types of data to a function
–  …

Basis of many modern "scripting" languages, e.g., Python,
Ruby, etc.

Implementation can analyze the code to ascertain whether
some checks aren’t needed, then optimize them away

55

A different issue: Operators

•  Is “foo” + “bar” allowed?
•  Is “foo” + 3 allowed?

•  Is arr[10] allowed if arr has only 5 elements?

This is not "static vs. dynamic checking."
It is “what is the run-time semantics of the primitive.”
–  Regardless of choice as to whether each is allowed, could

build either static or dynamic checker for it

56

