
Prof. Clarkson 
Fall 2014 

CS 3110 
Lecture 13: Hash tables 

Today’s music:  Re-hash by Gorillaz 



Review 

Recently: 
•  Imperative features 
– Refs, arrays, mutable fields 

•  Imperative data abstractions 
– Functional arrays implemented with refs 

Today: 
•  Hash tables 



Question #1 

How excited are you about Prelim 1? 
A.  Excited 
B.  Super excited 
C.  Mega excited 
D.  Ultra excited 
E.  Super-mega-ultra excited 



Prelim 1 

•  Thursday night 
– Your choice of  5:30-7:00 pm or 7:30-9:00 pm 
– Please arrive 15 minutes early to settle in 

– Three rooms, assigned by NetID (see Piazza) 

•  Closed book, with one page of notes  
–  (8.5x11” two-sided) 

•  Covers Lecture 1 through Recitation 10, inclusive 



Maps* 

module type MAP = sig!
  type ('key, 'value) map!
  exception NotFound!
  val insert: !
    'key -> 'value -> ('key, 'value) map !
      -> ('key, 'value) map!
  val find: 'key -> ('key, 'value) map !
      -> 'value option!
  val remove: 'key -> ('key, 'value) map!
      -> ('key, 'value) map!
  ...!
end!

*aka associative array, dictionary, symbol table 



Maps vs. Sets 
•  Implement a set with a map: 

–  Abstraction function:  a map m represents the set s whose elements are 
the keys bound by the map 

–  e.g., {k1=v1, k2=v2, ...} represents the set {k1,k2,...} 
–  values are just ignored 

•  Implement a map with a set (of pairs): 
–  Abstraction function:  a set s represents the map m that, for each element 

(k,v) of the set, contains the binding of key k to value v 
–  Representation invariant:  no key appears more than once in the set 
–  e.g., {(k1,v1),(k2,v2),...} represents the map {k1=v1, 
k2=v2, ...} 

•  For our MAP interface, map and set implementations are 
interchangeable 
–  maybe not quite as easy for richer interfaces, e.g., MAP.all_values 



Map implementations 

•  Association lists 
•  Functions 
•  Balanced search trees 
•  Arrays 
•  Hash tables 



Association lists 

•  Representation type: 
 type ('key, 'value) map = 

    ('key*'value) list 
•  Abstraction function:   
–  A list [(k1,v1); (k2;v2); ...] represents the map 
{k1=v1, k2=v2, ...}.   

–  If k occurs more than once in the list, then in the map it is 
bound to the left-most value in the list. 

•  Efficiency: 
–  insert:  O(1) 
–  find:  O(n) 
–  remove:  O(n) 



Functions 
•  Representation type: 
 type ('key, 'value) map =  

     'key -> 'value 
•  Abstraction function:   

–  A function fun k -> if k=k1 then v1 else (if k=k2 
then v2 else ...) represents the map {k1=v1, 
k2=v2, ...} 

•  Efficiency: 
–  insert:  O(1) 
–  find:  O(n) 
–  remove:  not supported.   

•  Could introduce negative entries in function of the form if k=k' then 
raise NotFound 

•  But then find is O(N) where N is the number of entries ever added to the map 



Balanced search trees 
Red-black trees: 
•  Representation type:   

 type ('key,'value) map = ('key,'value) rbtree  
•  Abstraction function:  a node with label (k,v) and subtrees left 

and right represents the smallest map containing the binding 
{k=v} unioned with the bindings of left and right 

•  Representation invariant: the red-black invariants 
•  Efficiency: 

–  insert: O(lg n) 
–  find: O(lg n) 
–  remove: O(lg n) 

•  OCaml's Map module uses a closely-related balanced search tree called 
AVL tree 



Arrays 
•  Representation type: 
 type ('key, 'value) map = 'value option array 

•  Assume we can convert 'key to int in constant time 
–  Conversion must be injective:  never maps two keys to the same integer 
–  Then there is a unique inverse mapping integers to keys 
–  Easiest realization:  restrict keys to be integers! 

•  Abstraction function:  An array[|v1; v2; ...|] represents the 
map {inverse(1)=v1, inverse(2)=v2, ...}.   

•  Aka direct address table 
•  Efficiency: 

–  insert:  O(1) 
–  find:  O(1) 
–  remove:  O(1) 
–  wastes space, because some keys are unmapped 



Question #2 

If you wanted to map office numbers (e.g., 461) to 
occupant names (e.g., "Clarkson"), which 
implementation would be most time efficient? 

A.  Association lists 
B.  Functions 
C.  Balanced search trees 
D.  Arrays 



Question #2 

If you wanted to map office numbers (e.g., 461) to 
occupant names (e.g., "Clarkson"), which 
implementation would be most time efficient? 

A.  Association lists 
B.  Functions 
C.  Balanced search trees 
D.  Arrays 



Map implementations 

insert	
   find	
   remove	
  

Associa0on	
  lists	
   O(1)	
   O(n)	
   O(n)	
  

Func0ons	
   O(1)	
   O(n)	
   N/A	
  

Balanced	
  search	
  trees	
   O(lg	
  n)	
   O(lg	
  n)	
   O(lg	
  n)	
  

Arrays	
   O(1)	
   O(1)	
   O(1)	
  

•  Balanced search trees guarantee logarithmic efficiency 
•  Arrays guarantee constant efficiency, but require injective 

conversion of keys to integers 
 ...we'd like constant efficiency with arbitrary keys 



Hash tables 

Main idea:  give up on injectivity 
– Allow conversion from 'key to int to map 

multiple keys to the same integer 

– Conversion function called a hash function 
– Locations it maps to called buckets 
– When two keys map to the same bucket, called a 

collision 

...how to handle collisions? 
 



Collision resolution strategies 

1.  Store multiple key-value pairs in a collection at 
a bucket; usually the collection is a list 
– called open hashing, closed addressing, separate 

chaining 
–  this is what OCaml's Hashtbl does 

2.  Store only one key-value pair at a bucket; if 
bucket is already full, find another bucket to use 
– called closed hashing, open addressing 



Hash table implementation 
•  Representation type: 
 type ('key, 'value) map =  

    ('key*'value) list array 
•  Abstraction function:  An array 

[|[(k11,v11); (k12,v12);...]; 
  [(k21,v21); (k22,v22);...]; ...|]  
represents the map {k11=v11, k12=v12, ...}.   

•  Representation invariants:   
–  A key k appears in array index b iff hash(k)=b 
–  No key appears more than once in its bucket 

•  Efficiency:  ??? 
–  have to search through list to find key 
–  no longer worst-case constant time 



Efficiency of hash table 
•  Terrible hash function:  hash(k) = 42 

–  All keys collide; stored in single bucket 
–  (Doesn't violate the RI for rep type on previous slide—it's not a duplication of keys 

in bucket) 
–  Degenerates to an association list in that bucket 

•  insert: O(1) 
•  find & remove:  O(n) 

•  Perfect hash function:  injective 
–  Each key in its own bucket 
–  Degenerates to array implementation 

•  insert, find & remove:  O(1) 
–  Surprisingly, possible to design  

•  if you know the set of all keys that will ever be bound in advance 
•  size of array is the size of that set 
•  so you want the size of the set to be much smaller than the size of the universe of possible keys 



Efficiency of hash table 

•  New goal:  constant-time efficiency on average 
– Desired property of hash function:  distribute keys 

randomly among buckets to keep average bucket length 
small 

–  If expected length is on average L: 
•  insert:  O(1) 
•  find & remove:  O(L) 

•  Two new problems to solve: 
1.  How to make L a constant that doesn't depend on 

number of bindings in table? 
2.  How to design hash function that distributes keys 

randomly? 



Independence from # bindings 
Let's think about the load factor... 

= average number of bindings in a bucket = expected bucket length 
= n/m, where n=# bindings in hash table, m=# buckets in array 

•  e.g., 10 bindings, 10 buckets, load factor = 1.0 
•  e.g., 20 bindings, 10 buckets, load factor = 2.0 
•  e.g., 5 bindings, 10 buckets, load factor = 0.5 

•  Both OCaml Hashtbl and java.util.HashMap provide 
functionality to find out current load factor 

•  Implementor of hash table can't prevent bindings from being added or 
removed 
–  so n isn't under control 

•  But can resize array to be bigger or smaller 
–  so m can be controlled 
–  hence load factor can be controlled 
–  hence expected bucket length can be controlled 



Control the load factor 

•  If load factor gets too high, make the array bigger, thus 
reducing load factor 
–  OCaml Hashtbl and java.util.HashMap:  if load factor > 

2.0 then double array size, bringing load factor back to around 1.0 
–  Rehash elements into new buckets 
–  Efficiency: 

•  insert:  O(1) 
•  find & remove:  O(2), which is O(1) 
•  rehashing:  arguably still constant time; will return to this later in course 

•  If load factor gets too small (hence memory is being wasted), 
could shrink the array, thus increasing load factor 
–  Neither OCaml nor Java do this 



Question #3 

How would you resize this representation type? 
 type ('key, 'value) map =  
    ('key*'value) list array 

A.  Mutate the array elements 
B.  Mutate the array itself 
C.  Neither of the above 
 



Question #3 

How would you resize this representation type? 
 type ('key, 'value) map =  
    ('key*'value) list array 

A.  Mutate the array elements 
B.  Mutate the array itself (can't—it's immutable) 
C.  Neither of the above 
 



Resizing the array 

Requires a new representation type: 
 type ('key, 'value) map =  
    ('key*'value) list array ref 

•  Mutate an array element to insert or 
remove 

•  Mutate array ref to resize 



Good hash functions 
Three steps to transform key to bucket index: 
1.  Serialize key into a stream of bytes 

–  should be injective 
2.  Diffuse bytes into a single large integer 

–  small change to key should cause large, unpredictable change in integer 
–  might lose injectivity here, but good diffusion into an int64 is likely to 

still be injective 
3.  Compress the integer to be within range of bucket indices 

–  dependence on number of buckets:  need to map from key to [0..m-1] 
–  definitely lose injectivity 

 
Responsibility for each step is typically divided between client and 
implementer... 
 



Responsibilities 

OCaml Hashtbl:   
–  function Hashtbl.hash : 'a -> int does 

serialization and diffusion in native C code, based on 
MurmurHash 

–  function Hashtbl.key_index does 
compression 

–  so implementer is responsible for everything 



Responsibilities 

OCaml Hashtbl.Make: 
–  functor with input signature 
Hashtbl.HashedType, with functions 
•  equal : t -> t -> bool and  
•  hash : t -> int 

– client provides equal and hash to do serialization 
and diffusion 
•  must guarantee that if two keys are equal they have the 

same hash 

–  so implementer is responsible only for compression 



Responsibilities 

java.util.HashMap:   
– method Object.hashCode() does serialization and 

diffusion 
•  typical default implementation is to return address of object as 

an integer; not much diffusion there 
•  client may override, must guarantee that if two keys are equal 

they have the same hash 

– method HashMap.hash() does further diffusion 
•  implementer doesn't trust client! 

– method HashMap.indexFor() does compression 
–  so implementer splits responsibilities with client 



Designing your own hash function 
•  Compression: 

–  Both Java and OCaml make the number m of buckets a power of two, and 
compress by computing mod m 

•  Serialization: 
–  Both Java and OCaml provide language support for serialization; in OCaml 

it's the Marshal module 
•  Diffusion: 

–  Various techniques, including modular hashing, multiplicative hashing, 
universal hashing, cryptographic hashing... 

–  If you don't achieve good diffusion, you lose constant-time performance! 
–  If your hash function isn't constant time, you lose constant-time 

performance! 
–  If you don't obey equals invariant, you lose correctness! 
–  Designing a good hash function is hard 



Hashtbl representation type 

type ('a, 'b) t =!
  { mutable size: int;!
    mutable data: ('a, 'b) bucketlist array;!
    ... }!
!
and ('a, 'b) bucketlist =!
    Empty!
  | Cons of 'a * 'b * ('a, 'b) bucketlist!
!
Why not use list?  Probably to save on one indirection. 



Hashtbl hash function 
(* key_index : ('a, 'b) t -> 'c -> int *)!
let key_index h key =!
  ...!
  (seeded_hash_param 10 100 h.seed key)!
    land (Array.length h.data – 1)!
  (* first line is serialization and diffusion,!
   * second line is compression *)!
!
external seeded_hash_param :!
  int -> int -> int -> 'a -> int = !
    "caml_hash" "noalloc"!
(* caml_hash : 300 lines of C *)!
(* hard to write good hash functions! *)!
!
!



Hashtbl insert 

(* add :  ('a, 'b) t -> 'a -> 'b -> unit *)!
let add (h: ('a,'b) t) (key: 'a) info =!
  let i = key_index h key in!
  let bucket = !
    Cons(key, info, h.data.(i)) in!
  h.data.(i) <- bucket; (* mutation! *)!
  h.size <- h.size + 1;!
  if h.size > !
    Array.length h.data lsl 1 !
    (* i.e. #buckets * 2 *)!
  then resize key_index h!



Hashtbl resize 
let resize indexfun h =!
  let odata = h.data in!
  let osize = Array.length odata in!
  let nsize = osize * 2 in (* double # buckets! *)!
  if nsize < Sys.max_array_length then begin!
    let ndata = Array.make nsize Empty in!
    h.data <- ndata; (* mutation! *)!
    let rec insert_bucket = function!
        Empty -> ()!
      | Cons(key, data, rest) ->!
          insert_bucket rest; !
          let nidx = indexfun h key in (* rehash! *)!
          ndata.(nidx) <- Cons(key, data, ndata.(nidx)) in!
    for i = 0 to osize - 1 do!
      insert_bucket odata.(i)!
    done!
  end!
 



WRAP-UP FOR TODAY 
Please hold still for 1 more minute 



Upcoming events 

•  PS4 released this week 
•  Prelim 1 on Thursday 
 

This is #3110. 

THIS IS 3110 


