
Prof. Clarkson
Fall 2014

CS 3110
Lecture 12: Imperative features

Today’s music: The Imperial March
from the soundtrack to Star Wars, Episode V: The Empire Strikes Back

Review

Recently:
•  Programming in the large
– Modules, signatures, functors
– Modularity, abstraction, specification
– Many data abstractions (stacks, queues, dictionaries,

…)

Today: THE DARK SIDE ARRIVES
•  Imperative features: refs, arrays, mutable fields

Question #1

How much of PS3 have you finished?
A.  None
B.  About 25%
C.  About 50%
D.  About 75%
E.  I’m done!!!

Question #2

What’s your opinion of Episode V?
A.  Great movie
B.  The greatest movie
C.  I’ve never watched it
D.  I’m not a sci-fi fan

Question #2

What’s your opinion of Episode V?
A.  Great movie
B.  The greatest movie
C.  I’ve never watched it
D.  I’m not a sci-fi fan

Prelim 1
•  One week from today
•  Covers everything from Aug 26 through Oct 1 (inclusive)

–  People with Thursday recitations, note that today’s recitation is included
•  Sample prelim posted on Piazza
•  Review session in recitation day before prelim
•  Cancel lecture on day of prelim
•  You can take prelim at your choice of 5:30-7:00 pm or 7:30-9:00 pm; no

need to reserve in advance
•  Three rooms, will be assigned by netid next wek
•  Closed book

–  But you may have one page of notes
–  8.5x11” two-sided J

Question #3

Which prelim do you think you will attend?
A.  5:30 pm
B.  7:30 pm

I’m just curious—you are not committing to
anything.

News about PS1

•  Relax, your grade is not going to change because of this news
•  Some groups got a very slightly higher grade on PS1 than they

should have
–  About 60 groups out of 150
–  But not that much higher...an average of just 1 point out of 160

across all groups
•  We will upload your correct autograder feedback as a new

comment in CMS for PS1 later today
–  You need to know as you study for Prelim 1!

•  But we will not lower your PS1 grade
•  I apologize for the accidental bonus...won’t happen again J

News about PS1

Object lesson in having tests suites and running regression
tests
– Autograder bug discovered while we graded PS2

•  (That’s why it took so long... we did a lot of manual validation
before releasing PS2 grades. And we will continue to manually
grade a random sample.)

–  Bug caused autograder to think you passed a test case
when you actually failed
•  Was introduced over the summer and was isolated to a single

regular expression match
•  Nobody got a lower grade than they should have because of this

bug
– Course staff should be practicing what I preach!

IMPERATIVE FEATURES

Mutable features of OCaml

•  Time to finally admit that OCaml has mutable
features
–  It is not a pure language
–  Pure = no side effects

•  Sometimes it really is best to allow values to
change, e.g.,
–  call a function that returns an incremented counter

every time
–  efficient hash tables

•  OCaml variables really are immutable
•  But OCaml has mutable references...

References

•  aka “ref” or “ref cell”
•  Pointer to a location in memory

•  The binding of x to the pointer is immutable, as always
–  x will always point to the same location in memory
–  unless its binding is shadowed

•  But the contents of the memory may change

let x = ref 0
let y = !x (* y bound to 0 *)
x := 1
(* could write let _ = x := 1 for uniformity *)
let z = !x (* z bound to 1 *)
(* x + 1 does not type-check *)

Implementing a counter

•  next_val() returns 1
•  then next_val() returns 2
•  then next_val() returns 3
•  etc.

let counter = ref 0
let next_val : unit -> int = fun () ->
 (counter := (!counter) + 1;
 !counter)

Implementing a counter

somewhat better style:

let counter = ref 0
let next_val : unit -> int = fun () ->
 (counter := (!counter) + 1;
 !counter)

let counter = ref 0
let next_val : unit -> int = fun () ->
 begin
 counter := (!counter) + 1;
 !counter
 end

References

•  Syntax: ref e
•  Evaluation:
–  Evaluate e to a value v
–  Allocate a new location in memory to hold v
–  Store v there
–  Return that location
–  Note: first-class values; can pass and return from functions

•  Type checking:
–  New type constructor: t ref where t is a type

•  Note: ref is used as keyword in type and as keyword in value

–  ref e : t ref if e : t

Evaluation semantics with refs

•  Reverting back to substitution model
– There is a global memory called the heap mapping

locations to values

– Evaluation order matters!

•  Could give environment model semantics, too
– Would need to write something like

 env, heap :: e --> v :: heap’
– The final heap’ reflects any side effects

References

•  Syntax: e1 := e2
•  Evaluation:
–  Evaluate e2 to a value v2
–  Evaluate e1 to a location v1
–  Store v2 in location v1
–  Return ()

•  Type checking:
–  If e2 : t
–  and e1 : t ref
–  then e1:=e2 : unit

References

•  Syntax: !e
– note: not negation

•  Evaluation:
– Evaluate e to a location v
– Return the contents of location v

•  Type checking:
–  If e : t ref
–  then !e : t

References

•  Syntax: e1; e2
•  Evaluation:

–  evaluate e1 to a value v1, then forget about that value
•  note: e1 could have side effects

–  evaluate e2 to a value v2
–  return v2

•  Type checking:
–  If e1 : unit
–  and e2 : t
–  then e1; e2 : t

•  Useful function from Pervasives:
ignore : ‘a -> unit
Evaluates its argument then returns ()

Implementing semicolon

Essentially syntactic sugar:

Except that type checker gives a warning if type of
e1 is not unit in the semicolon syntax

e1; e2
(* means the same as *)
let _ = e1 in e2

Aliases

•  Mini-review:
–  A variable bound to a reference is immutable: it will

always be bound to the same reference
–  But the contents of the reference may be changed by:=

•  And there may be aliases to the reference

Question #4

What does w evaluate to?

A.  42
B.  84
C.  85
D.  86
E.  zardoz

let x = ref 42
let y = ref 42
let z = x
let _ = x := 43
let w = (!y) + (!z)

Question #4

What does w evaluate to?

A.  42
B.  84
C.  85
D.  86
E.  zardoz

let x = ref 42
let y = ref 42
let z = x
let _ = x := 43
let w = (!y) + (!z)

Equality

•  Single equals is structural equality
– (ref 3110) = (ref 3110)
– [1;2;3] = [1;2;3]
– 2 <> 3

•  Double equals is physical equality
– let r1 = ref 3110
– let r2 = ref 3110
– r1 == r1
– r1 != r2

Beware

“You don’t know the power of the dark side”

Immutability is a valuable non-feature
might seem weird that lack of feature is valuable...

Suppose OCaml had mutable pairs…

What is z?
– Would depend on how we implemented sort_pair

•  Would have to decide carefully and document sort_pair
–  But without mutability...

•  No code can ever distinguish aliasing vs. copying
•  Programmer has no need to think about aliasing
•  Run-time can use aliasing, which saves space, without danger

let x = (4,3)
let y = sort_pair x

(* somehow mutate fst x to be 5 *)

let z = fst y

No need to think about aliasing...

let sort_pair (pr : int * int) =
 if fst pr > snd pr
 then pr
 else (snd pr, fst pr)

let sort_pair (pr : int * int) =
 if fst pr > snd pr
 then (fst pr, snd pr)
 else (snd pr, fst pr)

In OCaml, these two implementations of sort_pair are indistinguishable
–  But only because tuples are immutable
–  The first is better style: simpler and avoids making a new pair in the then-branch
–  In Java, you make copies like the second one all the time to avoid aliasing

No need to think about aliasing...

28

let rec append lst1 lst2 =
 match lst1 with
 [] -> lst2
 | h::t -> h :: (append t lst2)
let x = [2;4]
let y = [5;3;0]
let z = append x y

x

y

z

2 4

5 3 0

2 4

x 2 4

y

z

5 3 0

2 4 5 3 0

or

(no code can tell,
but run-time uses
the first one)

OCaml vs. Java on mutable data

•  In OCaml, we blissfully create aliases all the time
without thinking about it because it is
impossible to tell where there is aliasing
–  Example: tl is constant time; does not copy rest

of the list
–  So don’t worry and focus on your algorithm

•  In Java, programmers are obsessed with aliasing
and object identity
– They have to be (!) so that subsequent assignments

affect the right parts of the program
–  Often crucial to make copies in just the right

places…

29

Java security nightmare (bad code)

30

class ProtectedResource {
 private Resource theResource = ...;
 private String[] allowedUsers = ...;
 public String[] getAllowedUsers() {
 return allowedUsers;
 }
 public String currentUser() { ... }
 public void useTheResource() {
 for(int i=0; i < allowedUsers.length; i++) {
 if(currentUser().equals(allowedUsers[i])) {
 ... // access allowed: use it
 return;
 }
 }
 throw new IllegalAccessExcpetion();
 }
}

Have to make copies

31

 public String[] getAllowedUsers() {
 … return a copy of allowedUsers …
 }

The fix:

The problem:

p.getAllowedUsers()[0] = p.currentUser();
p.useTheResource();

Similar errors as recent as Java 1.7beta

Benefits of immutability

•  Programmer doesn’t have to think about aliasing; can
concentrate on other aspects of code

•  Language implementation is free to use aliasing, which is cheap
•  Often easier to reason about whether code is correct
•  Perfect fit for parallel programming

But there are downsides:
•  I/O is fundamentally about mutation
•  Some data structures (hash tables, arrays, …) hard(er) to

implement in pure style

Try not to abuse your new-found power!

 32

Additional imperative features

•  Arrays
•  Mutable fields
•  Control structures (while and for loops)
– Not themselves imperative but mostly used in

conjunction with imperative features

Arrays
Arrays generalize ref cells from a single mutable
value to a sequence of mutable values

[|e1; ...; en|]
•  evaluates to an n-element array, whose

elements are initialized to v1...vn, where
e1-->v1, ..., en-->vn

•  [|e1; ...; en|] : t array if each
ei : t

Arrays
e1.(e2)
•  if e1-->v1, and e2-->v2, and 0<=v2<n,

where n is the length of array v1, then evaluates
to element at offset v2 of v1. If v2<0 or
v2>=n, raises Invalid_argument.

•  e1.(e2) : t if e1 : t array and
e2 : int

Arrays
e1.(e2) <- e3
•  if e1-->v1, and e2 --> v2, and 0 <= v2 <
n, where n is the length of array v1, , and e3 -->
v3, then mutates element at offset v2 of v1 to
be v3. If v2<0 or v2 >= n, raises
Invalid_argument. Evaluates to ().

•  e1.(e2) <- e3 : unit if e1 : t
array and e2 : int
and e3 : t

See Array module for more operations, including more ways
to create arrays

Mutable fields

Fields of a record type can be declared as mutable:

type point = {x:int; y:int; mutable c:string};;
type point = {x:int; y:int; mutable c:string; }
let p = {x=0; y=0; c=“red”};;
val p : point = {x=0; y=0; c=“red”}
p.c <- “white”;;
- : unit = ()
p;;
val p : point = {x=0; y=0; c=“white”}
p.x <- 3;;
Error: The record field x is not mutable

Implementing refs

Ref cells are essentially syntactic sugar:

type 'a ref = { mutable contents: 'a }
let ref x = { contents = x }
let (!) r = r.contents
let (:=) r newval = r.contents <- newval

•  That type is declared in Pervasives
•  The functions are compiled down to something equivalent

Control structures

Traditional loop structures are useful with
imperative features:
•  while e1 do e2 done
•  for id=e1 to e2 do e3 done
•  for id=e1 downto e2 do e3 done
Read the manual for (the obvious) semantics...

WRAP-UP FOR TODAY
Please hold still for 1 more minute

Upcoming events

•  PS3 due tonight
•  PS4 released next week
•  Prelim 1 is in one week

This is imperative.

THIS IS 3110

