
Prof. Clarkson
Fall 2014

CS 3110
Lecture 10: Functors

Today’s music: “Nice to know you” by Incubus
“...It’s hard for me to specify...”

Review

First month of course:
•  Programming in the small

–  Lots of language features
–  Lots of small functions

This week:
•  Programming in the large

–  A few new language features (modules, signatures)
–  Modularity, abstraction

•  Today:
–  Specification
–  Functors

Question #1

Think about java.util (or some other library you’ve used
frequently). How do you usually come to understand the
functionality it provides?
A.  By example: I search until I find code using the library, then

tweak the code to do what I want.
B.  By tutorial: I read the library’s tutorial to understand how it

works, then I write code inspired by it.
C.  By documentation: I read the official documentation for

functions, classes, etc., in the library, then I write code from
scratch.

D.  By implementation: I download the source code for the
library, read it, then write my own code.

E.  I never really understood java.util.

ABSTRACT TYPES

Review: stack with abstract types
module type STACK = sig!

!type 'a t!
!val empty : 'a t!

 val is_empty : 'a t -> bool!
 val push : 'a -> 'a t -> 'a t!
 val pop : 'a t -> 'a * 'a t!
end!
!
module Stack : STACK = struct!

!type 'a t = 'a list!
!let empty = []!
!let is_empty s = s = []!
!let push x s = x :: s!
!let pop s = match s with !
! [] -> failwith "Empty"!
!| x::xs -> (x,xs)!

end!

Recall: procedural and data abstraction

Abstract type inside stack
Why hide the fact that a stack is an ‘a list?

General principle: information hiding
•  Clients of Stack don’t need to know it’s implemented with a list
•  Implementers of Stack might one day want to change the

implementation
–  If list implementation is exposed, they can’t without breaking all their

clients’ code
–  If list implementation is hidden, they can freely change

Example?
•  Honestly, hard with the Stack signature we have
•  Many languages simply supply pop and push functions for lists
•  But suppose we want to support a min function...

Stacks with min

module type STACK = sig
 type 'a t
 val empty : 'a t
 val is_empty : 'a t -> bool
 val push : 'a -> 'a t -> 'a t
 val pop : 'a t -> 'a * 'a t
 val min : 'a t -> 'a option
end

Stacks with min

module Stack : STACK = struct
 type 'a t = 'a list
 let empty = []
 let is_empty s = s = []
 let push x s = x :: s
 let pop s = match s with
 [] -> failwith "Empty"

 | x::xs -> (x,xs)
 let min s = list_min s
end

Suppose we want to support O(1) min, and are okay with more expensive pop

Reimplemented stack
module StackEffMin : STACK = struct
 (* In S(m,lst), the list must never be empty,
 and m must be the minimum value in the stack *)

 type 'a t = Empty | S of 'a * 'a list
 let is_empty ms = ms = Empty
 let push x ms =
 match ms with
 Empty -> S (x,[x])
 | S(m,s) -> S (min x m, x :: s)
 let min ms =
 match ms with
 Empty -> None
 | S(m,_) -> Some m
 ...

 (* pop is more expensive *)
end

Reimplemented stack

•  The representation type changed
–  from ‘a list
–  to Empty | S of ‘a * ‘a list

•  If type is abstract in signature, clients continue to
compile

•  If type is revealed in signature, clients who relied on
a list fail to compile

•  For more complicated data structures, this problem
just gets worse
–  e.g., suppose Microsoft wants to update the data

structure representing a window or canvas or file or...

Other data structures

•  In recitation: stacks, queues, dictionaries,
fractions

•  All are functional data structures:
– never destructively update the data structure

–  instead, apply functions that produce a new copy of
the data structure with some changes applied

– both copies are still available for use

Set data structure
module type SET = sig
 type 'a set
 val empty : 'a set
 val mem : 'a -> 'a set -> bool
 val add : 'a -> 'a set -> 'a set
 val size: 'a set -> int
end

module ListSet : SET = struct
 (* the list may never have duplicates *)
 type 'a set = 'a list
 let empty = []
 let mem = List.mem
 let add x l = if mem x l then l else x :: l
 let size = List.length
end

Set data structures

How does List.mem check for membership?
let rec mem x = function
 [] -> false
 | a::l -> compare a x = 0 || mem x l

What is compare?
“compare x y returns 0 if x is equal to y, a negative
integer if x is less than y, and a positive integer if x is
greater than y.” [Pervasives.mli]
How does compare work?
•  Abstraction: spec doesn’t say
•  Implementation calls into C code [e.g., byterun/str.c]

Set data structures

•  Suppose we want a set with a relaxed notion of
equality
– Case-insensitive strings

– + or – insensitive ints

•  Ideas???

Question #2

How would you design a set abstraction that
allows relaxed notions of equality?
A.  Ask client to preprocess each item as added to

set
B.  Ask client to pass in a customized comparison

function as argument to each set function
C.  Store a comparison function as part of the

representation type of the set
D.  Something else...

Set data structures

•  Could ask client to preprocess each item as added to
set
–  But client might forget

•  Could pass in a customized comparison function
–  But client has to pass it in everytime mem or add is called

•  Could store function as part of representation type
–  But no longer possible to tell from type of set what kind

of comparison it will use

•  Probably many other ideas... OCaml has a great
feature called functors that is designed to help

Functor

A functor is a “function” from modules to modules
– Module-level functions
– Written with different syntax than value-level

functions
– Have functor types, written with different syntax

than value-level function types

Simple functor
module type XINT = sig
 val x : int

end
module Three : XINT = struct
 let x = 3

end

module IncFn(M:XINT) : XINT = struct
 let x = M.x+1

end
module Four = IncFn(Three)

Four.x - Three.x --> 1

Alternative syntax

module IncFn(M:XINT):XINT = struct
 let x = M.x+1

end
(* or *)
module IncFn =
 functor (M: XINT) ->
 (struct
 let x = M.x+1
 end : XINT)

(* cannot write “return type”
 * to the left of arrow *)

A nifty functor trick

Can write a functor to do the following:
•  Take any module that contains fold function
•  Produce a new module that contains everything

implementable with just fold!
–  iter, length, for_all, etc.

•  Functions for free!
–  see chap. 9 of Real World OCaml
–  Ruby has a similar idiom with Enumerable

•  (write an iterator each, get many functions for free)

But back to sets...

Equality signature
module type EQUAL = sig
 type t
 val equal : t -> t -> bool

end
module StringEqual : EQUAL = struct
 type t = string
 let equal = (=)

end
module StringCaseInsEqual : EQUAL = struct
 type t = string
 let equal s t =

 String.uppercase s = String.uppercase t
end

Using equality modules

StringCaseInsEqual.equals “s” “S”

Error: This expression has type
string but an expression was
expected of type
StringCaseInsAbsTypeEqual.t

Problem: outside module, nobody knows what t is, so
can’t pass in strings!
Solution: expose the abstract type

Type exposure

module StringCaseInsEqual :
 (EQUAL with type t = string) =

struct
 type t = string
 let equal s t =
 String.uppercase s = String.uppercase t

end

Sharing constraint: shares with outside world what abstract type really is

Set functor
module MakeSetFn (Equal: EQUAL) = struct
 type elt = Equal.t
 (* the list may never have duplicates *)
 type set = elt list
 let empty = []
 let mem x = List.exists (Equal.equal x)
 let add x l = if mem x l then l else x :: l
 let size = List.length
end

module StringSet = MakeSetFn(StringEqual)
module CaseInsStringSet =
 MakeSetFn(StringCaseInsEqual)

Type of set functor?
module type SET_FN =
 functor (Equal : EQUAL) -> sig
 type elt = Equal.t
 type set
 val empty : set
 val mem : elt -> set -> bool
 val add : elt -> set -> set
 val size: set -> int
 end
module MakeSetFn : SET_FN =
 functor (Equal: EQUAL) -> struct
 (* as on previous slide ... *)
 end

ABSTRACTION

Abstraction techniques

Procedural and data abstraction share two
common techniques:
•  Abstraction by parameterization
•  Abstraction by specification

Abstraction by parameterization

•  Introduce parameters to functions
•  Use those parameters instead of hardcoded values,

e.g.,
–  instead of a*a+b*b,
– write let sum_squares x y -> x*x + y*y,

–  and call sum_squares a b

•  you basically take abstraction by parameterization
for granted in any modern language

Abstraction by specification

•  Document behavior of function
–  Primarily, with pre- and postconditions
– Use documentation to reason about behavior

•  instead of having to read implementation

•  We’ve been teaching you this for three semesters
now, I hope...but...
–  the language syntax doesn’t demand it
–  the compiler doesn’t checks it
–  ...so writing good specs is a skill that takes longer to

mature

Example specification

Exercise: take 2 minutes. Feel free to talk with
someone near you. Identify any preconditions and
postconditions.

Example specification

•  Sort a list in increasing order according to a comparison
function.

•  The comparison function must return 0 if its arguments
compare as equal, a positive integer if the first is greater,
and a negative integer if the first is smaller (see Array.sort
for a complete specification). For example, compare is a
suitable comparison function.

•  The resulting list is sorted in increasing order.
•  List.sort is guaranteed to run in constant heap space (in

addition to the size of the result list) and logarithmic stack
space.

Example specification

•  One-line summary of behavior: Sort a list in increasing
order according to a comparison function.

•  Precondition: The comparison function must return 0 if
its arguments compare as equal, a positive integer if the
first is greater, and a negative integer if the first is smaller
(see Array.sort for a complete specification). For example,
compare is a suitable comparison function.

•  Postcondition: The resulting list is sorted in increasing
order.

•  Promise about behavior: List.sort is guaranteed to run in
constant heap space (in addition to the size of the result
list) and logarithmic stack space.

Question #3

What grade would you give the List.sort specification?
A.  It provides pre- and postconditions. They are

specific enough for me to understand how to use
the function as a client. They do not contain
irrelevant details or vague descriptions.

B.  Parts of the specification are hard to understand.
Some details are missing, or some parts are vague.

C.  The specification is confusing or just plain wrong.

What if you had to read the implementation?

WRAP-UP FOR TODAY
Please hold still for 1 more minute

Upcoming events

•  PS3 due in one week
•  Clarkson’s office hours today as usual

This is abstract.

THIS IS 3110

