
CS 3110 Fall 2014 Due at 11:59 PM, 10/23/14
Problem Set 4
Version 3 (last modified October 19, 2014)

Revision log

• [10/19/14] (i) Clarified that it is an error if the variables bound by a let* or letrec do
not all have distinct names. (The same is not true of let.) The reference implementa-
tion had a bug and did not correctly detect this error. That bug has been fixed, and
the reference implementation has been updated on CMS. (ii) Two examples in the ex-
ample transcript from the reference implementation were out-of-order; their order has
been corrected, and the transcript has been updated on CMS. (iii) The interpreter’s
parser interpreter/parser.mly had a bug with dotted lists. The bug has been fixed,
and the file has been updated on CMS.

• [10/15/14] Corrected the names of TakeIterator and RangeIterator in the writeup.

Objectives

• Use imperative features, including refs and arrays.

• Gain more experience using the OCaml module system.

• Learn about iteration abstraction.

• Experience a different functional paradigm by implementing an interpreter for an un-
typed functional language.

• Practice reading a large requirements document and producing a piece of software that
satisfies those requirements.

Recommended reading

The following materials should be helpful in completing this assignment:

• Course readings: lectures 11, 12 and 13; recitations 10 and 11

• The CS 3110 style guide

• The OCaml tutorial

• Real World OCaml, Chapter 8

1

http://www.cs.cornell.edu/Courses/cs3110/2014fa/lecture_notes.php
http://www.cs.cornell.edu/Courses/cs3110/2014fa/handouts/style.html
http://ocaml.org/learn/tutorials/
https://realworldocaml.org/v1/en/html/index.html

What we supply

We provide an archive ps4.zip that you should download from CMS. We also provide a
compiled reference implementation of Problem 3 on CMS.

Partners and source control

You are required to work with a partner for this problem set. Each partner is responsible
for understanding all parts of the assignment. You need not use the same partner(s) as in
previous problem sets.

You are required to use git, a version control system, to work with your partner. Your
repository must be private. We expect the git log you submit to show evidence of work
over a period of time, not just a single commit at the end.

Grading issues

Compilation errors: All code you submit must compile. If your submission does not
compile, we will notify you immediately. You will have 48 hours after the due date to supply
us with a patch. If you do not submit a patch, or if your patched code does not compile,
you will receive an automatic zero.

Naming: We use automated grading, so it is crucial that you name your functions and
order their arguments according to the problem set instructions, and that you place the
functions in the correct files. Incorrectly named functions will be treated as compilation
errors.

Code style: Refer to the CS 3110 style guide and lecture notes. Ugly code that is func-
tionally correct will nonetheless be penalized. Take extra time to think and find elegant
solutions.

Late submissions: Carefully review the course policy on submission and late assignments.
Verify before the deadline on CMS that you have submitted the correct version.

Function Specification and Testing

You should continue to document specifications and write unit tests for functions that you
submit as part of your solutions.

2

http://www.cs.cornell.edu/Courses/cs3110/2014fa/handouts/style.html
http://www.cs.cornell.edu/Courses/cs3110/2014fa/course_info.php#programming_assignments

Imperative Features

Imperative features are now permitted. Side effects are not necessarily bad—they can be
quite useful in real-world programming. But we urge you to think carefully before choosing
to use imperative features!

3

Problem 1: Mutability (30 points)

[code] Starter code for this problem is provided in mutability.ml. You may not change
mutability.mli.

Exercise 1.

Implement a function count_up_from : int -> int -> unit -> int. Calling
count_up_from n k returns a function of type unit -> int; let’s call that returned function
f. The first time f is called, it should return n. The second time f is called, it should return
n+k. More generally, the ith time f is called, it should return n+(i-1)*k.

let c = count_up_from 3 2;;

val c : unit -> int = <fun >

c ();;

- : int = 3

c ();;

- : int = 5

c ();;

- : int = 7

Exercise 2.

Implement a function tabulate : (int -> ’a) -> int -> ’a array that takes a func-
tion f and an integer n, and returns an array of length n where the element at index i equals
f i. For example, tabulate (fun x -> x*x) 5 yields the array [|0; 1; 4; 9; 16|].
You may assume that f is pure.

Exercise 3.

Implement fold_left_imp, which has the same type and specification as fold_left, but
without using the rec keyword. Do not use library functions other than those in Pervasives.
(For karma, do it without looping—i.e., do not use for or while.)

Exercise 4.

Suppose we have two abstract types, t and u. In the absence of imperative features, it is a
theorem that for any function f : t -> u and any list xs : t list, it holds that

List.map f (List.rev xs) = List.rev (List.map f xs).

Using imperative features, write a function zardoz : t -> u that will invalidate this theo-
rem when invoked on a list lst. You may choose what the representation types of t and u

are. Our test case will use your bindings of zardoz and lst to assert that the above equality
does not hold.

4

Problem 2: Iterators (50 points)

[code] An iterator abstraction (henceforth, iterator) produces or yields a sequence of results,
one at a time. For example, an iterator might yield each element of a list, or each node of a
tree, or each of the prime numbers in increasing order. An iterator might eventually run out
of results to yield, or it might keep producing results indefinitely. Iterators are primarily an
imperative idiom, although pure functions like fold resemble iterators.

The exercises in this problem ask you to complete code in iterator.ml. Some code has
already been provided for you; you should not change that code. The code provides many
specifications for you. Your implementation should satisfy those specifications.

Note on starter code: The starter code we provide to you has an interface file named
iterator when done.mli. When you are done writing your solution, you should rename that
file to iterator.mli and confirm that your solution compiles against that interface. Out of
the box, iterator.ml will not compile against the signature in iterator when done.mli,
because iterator when done.mli requires four modules that iterator.ml does not yet
implement.

Exercise 1.

Implement the LIST_ITERATOR signature with a module ListIterator.

Exercise 2.

Implement the INORDER_TREE_ITERATOR signature with a module InorderTreeIterator.
Recall that an in-order tree traversal recursively visits the left subtree, then the root, then
the right subtree.

Exercise 3.

Implement the functor TakeIterator. Its behavior is described by the functor type TAKE_ITERATOR.

Exercise 4.

Implement the IteratorUtilsFn functor. Hint: When applied to ListIterator, the be-
havior of IteratorUtilsFn.fold should be the same as List.fold_left.

Exercise 5.

Implement the functor RangeIterator. Its behavior is described by the functor type RANGE_ITERATOR.
Hint: Leverage your solutions to previous exercises.

5

Problem 3: Scheme3110 Interpreter (140 points)

[code] At this point in your CS 3110 career, you have a good grasp of the typed style of
functional programming. In this problem, you will gain experience with the untyped style of
functional programming. Each style has its own benefits; the goal of this problem is to let
you see first-hand the benefits of each, by implementing one in terms of the other.

Your task here is to implement an interpreter for language called Scheme3110. Scheme3110
is an impure, dynamically typed functional language closely related to Scheme. Scheme3110,
like Scheme, is a member of the LISP family of languages, known for their use of s-expressions
for both program structure and data structure. Scheme was the first LISP to use lexical
closures, which you will be implementing in Scheme3110.

We have provided starter code for you in the interpreter/ directory of the release. There
are five modules we provide:

• Ast: code for representing the syntax of Scheme3110

• Environment: code for representing dynamic environments

• Eval: code for implementing evaluation of Scheme3110 programs

• Identifier: code for representing names

• Repl: code that implements a top-level for Scheme3110

The only file you may modify is eval.ml.

Game plan: Your goal is to implement evaluation of Scheme3110 programs. The rest of
the writeup below is designed to help you with that by describing

• the Scheme3110 REPL,

• examples of Scheme3110 programs,

• the syntax and semantics of Scheme3110,

• the initial environment of a Scheme3110 program,

• translation of Scheme3110 programs from an external representation to expressions,

• evaluating expressions to values, and

• a plan of attack for the order in which you should implement evaluation of expressions.

The rest of this writeup is exceedingly long compared to previous problem sets. You will
need to read it carefully if you are to be successful. The good news is that our reference
solution is only about 300 lines of code, so the amount of code you need to write is small
in proportion to the size of the writeup. But it can be tricky code to write, so you’ll need
to start early. More than ever before, it is crucial that you think carefully before
writing code.

6

Errors: In several places below, we use the phrase “it is an error.” By this we mean that
your implementation should raise an exception. We do not specify what that exception
should be. You might even choose to raise different exceptions for different errors.

3.1 The REPL

We provide a compiled reference implementation of the interpreter on CMS. This is the
Scheme3110 equivalent of utop, i.e., a REPL (read-eval-print loop). When you’re not sure
about the evaluation of some Scheme3110 program, the reference REPL can help answer
your question. Don’t decompile this file: we have obfuscated it, so it’s highly unlikely to
give you any useful information; and doing so is a breach of academic integrity.

To build your own REPL after modifying eval.ml, run cs3110 compile repl.ml, and
to run your own REPL, run cs3110 run repl.ml.

3.2 Examples of Scheme3110 programs

We provide a text file interpreter/example-scheme3110-session.txt, which contains
sample input and output from our reference REPL. The next thing you should do is
read that file. Come back here when you have finished reading it.

To continue gaining an intuition for the syntax and semantics of Scheme3110, run
interpreter/scheme3110-reference. Try entering the programs from the sample session.
Play around with programs of your own.

3.3 The syntax of Scheme3110

Scheme3110 syntax can be divided into two parts: expressions, and external representations.
The expression syntax describes expressions that can be evaluated to values. The external
representation syntax describes data.

Here’s an example expression: (+ a b). We read that as calling a procedure named + with
two arguments. Here’s an example external representation: (+ a b). We read that as a list
containing three identifiers, the first of which is written +. But they look the same—don’t
they? The essence of Scheme3110 syntax (and Scheme/LISP syntax in general) is that code
is data: what we normally think of as code (e.g., (+ a b c)) can be thought of as data,
too.

In the BNF below, boldface denotes syntactic classes of expressions, and s+ denotes one
or more occurrences of syntactic form s. Whitespace and comments are insignificant other
than to act as separators.

3.3.1 External representation syntax

We now describe how data are represented. Note that there is no discussion of evaluation
here—data are not yet ready to be evaluated.

7

datum ::= atom | nil | cons-cell

A datum is the fundamental unit of representation in Scheme3110. Even code can be
represented as data.

atom ::= boolean | integer | identifier

An atom is an indivisible syntactic unit that can be either a Boolean, an integer, or
an identifier.

boolean ::= #t | #f

A Boolean atom may be either true, written #t, or false, written #f.

integer ::= same as OCaml integers

An integer atom may be any integer representable using OCaml’s int type.

identifier ::= mostly the same as OCaml identifiers

Roughly, any sequence of letters, digits, and punctuation that begins with a charac-
ter is an identifier. Some punctuation by itself is also an identifier. Here are some
examples of identifiers: lambda, q, list->vector, soup, +, V17a, <=?, a34kTMNs,
and the-word-recursion-has-many-meanings. Identifiers are not case-sensitive. So
HELLO, hello, and hElLo are all the same identifier.

If you’re interested in the exact syntax for identifiers, see lexer.mll.

nil ::= ()

Nil is also known as the empty list. Note: don’t confuse this with OCaml’s unit value,
which is is written with the same syntax.

cons-cell ::= (datum . datum)

A cons-cell is a pair whose first element is called the car (pronounced CAR, as in
an automobile), and whose second element is called the cdr (pronounced COULD-er).
The names are historical: they originally stood for “Contents of the Address part of
Register number” and “Contents of the Decrement part of Register number.”

3.3.2 Syntactic sugar in the external representation

There are two convenient forms of syntactic sugar with which we can extend the external
representation syntax:

dotted-list ::= (datum+ . datum)

A dotted-list holds two or more data, with the final datum being separated from the
initial data by a single period. The dotted-list (datum1 datum2 datumm) is
syntactic sugar for the cons-cell (datum1 . (datum2 . (. . . . datumm))).

8

list ::= (datum+)

A list holds one or more data, and is implicitly terminated by an empty list. The list
(datum1 datum2 . . . datumn) is syntactic sugar for the cons-cell
(datum1 . (datum2 . (. . . . (datumn . ())))).

For example,

the datum. . . can be desugared to. . .
(define x 2110) (define . (x . (2110 . ())))

(quote (+ 1 2)) (quote . ((+ . (1 . (2 . ()))) . ()))

3.3.3 Syntax and semantics

We now give the syntax and semantics of Scheme3110 programs. Programs evaluate to
values, where a value is either a datum or a closure.

program ::= toplevel+

A Scheme3110 program is a series of top-level phrases, evaluated in left-to-right order.
The value of the final phrase is returned.

toplevel ::= definition | expr

A top-level phrase is either a definition or an expression. These are the syntactic forms
most commonly entered into the top-level—i.e., the REPL—whence the name.

definition ::= (define variable expr)

A definition binds the variable to the result of evaluating the body expression, as
follows. First, if the variable is not already bound to any value, then it is bound to
the empty list, creating a possibly new environment. Second, the body expression is
evaluated in that environment. Finally, the identifier is mutated to be the result of
this evaluation. The entire definition evaluates to the empty list.

The reason for the initial binding to the empty list is to enable definition of recursive
functions: the function will have its own name available as a binding in the environment
part of its closure.

variable ::= Any identifier that is not a keyword

A variable is an identifier that can be bound to a value in an environment. To evaluate
a variable, look up its value in the current environment. Keywords may not be used as
variable names. The provided function Identifier.is_valid_variable can be used
to determine whether an identifier is a valid variable.

keyword ::= define | quote | if | lambda | set! | let | let* | letrec

A keyword is an identifier reserved by the Scheme3110 language for its own use. It
may not be used as a variable name.

9

expr ::= self-evaluating | variable | quote | if | lambda | assignment
| let | let-star | letrec | procedure-call

Expressions are the primary building-block of Scheme3110 programs, just as they are
for OCaml programs. Scheme3110 expressions are not typed, however.

self-evaluating ::= boolean | integer

Self-evaluating expressions evaluate to themselves.

quote ::= (quote datum) | ’ datum

A quote expression evaluates to its unquoted datum. The form ’ datum (single-quote
and an expression) is syntactic sugar for (quote datum).

Quoting is an important operation in Scheme3110: it allows an arbitrary datum to
appear in the program. This syntax enables a program to operate on arbitrary data—
including other programs! See the example REPL transcript for an example of using
quoting.

if ::= (if expr1 expr2 expr3)

If expr1 evaluates to #f, then the if expression evaluates to the result of evaluating
expr3. Otherwise, the if expression evaluates to result of evaluating expr2. Note that
any value that is not explicitly false is treated as true.

lambda ::= (lambda (variable+) expr+)

A lambda expression creates a procedure, which is Scheme-speak for a function. The
expression evaluates to a closure containing three things: its list of argument variables,
its list of body expressions, and the lexical environment which it was evaluated in.
None of the body expressions is evaluated yet. It is an error if the variables do not all
have distinct names.

assignment ::= (set! variable expr)

A set-bang expression mutates the variable to the result of evaluating the body ex-
pression. It is an error if the identifier is not already bound in the environment. (Note
how that is unlike define.) The expression evaluates to the empty list.

let-star ::= (let* (let-binding+) expr+)

let-binding ::= (variable expr)

A let-star expression evaluates its let-bindings in order from left-to-right. To evaluate a
let-binding, the binding’s expression is evaluated in the current environment, then the
environment is extended to bind the variable to the result. Thus the second binding is
done in an environment where the first is visible, and so forth. Later bindings shadow
earlier bindings, in the event that variables do not all have distinct names. (So let-star
is similar to an OCaml expression let v1=e1 in let v2=e2 in...in e.) Finally, the
body expressions of the let-star are evaluated in left-to-right order, starting with the
environment containing all the let-bindings.

10

let ::= (let (let-binding+) expr+)

A let expression is similar to a let-star expression, but the bindings take effect simulta-
neously. Each let-binding’s expression is evaluated in the original environment of the
let expression; the let-bindings should be evaluated from left-to-right. It is an error if
the variables do not all have distinct names. (So let is similar to an OCaml expression
let v1=e1 and v2=e2 and...in e.) Then, a new environment is produced that con-
tains all of the bindings. Finally, the body expressions are evaluated in left-to-right
order, starting with this new environment.

letrec ::= (letrec (let-binding+) expr+)

A letrec expression is similar to a let expression, but every binding is evaluated in an
environment where all the other bindings are also visible, thus enabling definition of mu-
tually recursive procedures. It is an error if the variables do not all have distinct names.
(So letrec is similar to an OCaml expression let rec v1=e1 and v2=e2 and...in e.)
It must be possible to evaluate each binding expression without reading or writing the
value of a variable in any of the other binding expressions. If not, the behavior of your
interpreter is unspecified. (This restriction is necessary to ensure that the mutually
recursive definitions can be correctly constructed without exposing an environment in
which some of them are fully defined and others are not.)

procedure-call ::= (expr1 expr+)

As long as expr1 is not any of the above forms (that is, it is not quote, if, lambda,
set!, let, let* or letrec), any list of two or more elements is a procedure call. The
first expression is evaluated, and if it evaluates to a closure, the remaining expressions
are evaluated in order and used as arguments to the procedure. If the first expression
does not evaluate to a closure, it is an error. Each argument variable is bound to
the corresponding evaluated argument expression. It is an error if the procedure is
called with a different number of arguments than the closure expects. The closure
environment is then extended with each of these argument bindings, and each of the
body expressions is evaluated in order, beginning with the extended environment.
The procedure call evaluates to result of evaluating the final body expression of the
procedure.

Some procedures, such as addition, are built-in to the interpreter. These builtins are
implemented with OCaml code. For example, the Scheme3110 + procedure will be
implemented with the OCaml (+) function.

3.4 The initial environment

The initial environment of a Scheme3110 program contains the following bindings:

• The variable course, set to the integer 3110.

• The procedures car and cdr, which take in a single cons-cell datum and return the
first element and second element of of the cons-cell, respectively. If the procedures are
called on anything other than a single cons-cell datum, it is an error.

11

• The procedure cons, which takes in two data and returns a cons-cell whose car is the
first argument and cdr is the second argument. If the procedure is not called with
exactly two arguments, it is an error.

• The procedures + and *, which take in a variable number of integer data, and return
the OCaml sum and product, respectively, of all their arguments. For example, (+ 0),
(+ 0 0), and (+ 0 0 0) all evaluate to 0. If the procedures are called with any
non-integer arguments, or are called with zero arguments, it is an error.

• The procedure equal?, which returns whether its first argument is structurally equal
(in the OCaml sense of (=)) to its second argument. If the procedure is not called
with exactly two arguments, it is an error. The behavior of equal? on procedures is
unspecified.

• The procedure eval, which takes in a datum value, parses that datum into an expres-
sion, and evaluates that expression in the current environment, returning the resulting
value.

3.5 Translating from external representation to expressions

The input your Scheme3110 interpreter receives will be in the external representation form
given above—that is, it will be a datum. The first task your interpreter will need to
perform is to parse that datum into a program. We provide a complete representation
of Scheme3110 syntax for you in ast.ml and identifier.ml, which you may not modify.
(AST is an acronym for abstract syntax tree.)

To implement parsing, complete these functions in eval.ml:

val read_expression: datum -> expression

val read_toplevel: datum -> toplevel

Each function should take in a single datum, syntax check the datum using the expression
syntax above, and return an expression (for read_expression) or a top-level phrase (for
read_toplevel). If the datum is not valid Scheme3110 syntax, it is an error. To avoid code
duplication, you will want to have read_toplevel delegate to read_expression, since all
valid expressions are valid top-level phrases.

Take care to design your parsing of cons-cells. In implementing that, you might find
OCaml when-clauses to be useful:

match e0 with

| p when e1 -> e2

| ...

A when-clause in a match expression qualifies its pattern with a conditional check. The
pattern is only matched when that conditional check is satisfied. We have provided you the
start of such a match statement in the starter code in eval.ml.

12

3.6 Evaluating expressions to values

To implement evaluation, complete the following functions in eval.ml:

val eval: expression -> environment -> value

val eval_toplevel: toplevel -> environment

-> value * environment

The first function implements evaluation of expressions. That evaluation happens in the
context of a dynamic environment in which bindings may be mutated. We provide a complete
implementation of environments for you in environment.ml, which you may not modify.

The second function implements evaluation of top-level phrases, which may be either
expressions or definitions. Top-level evaluation therefore takes in an toplevel (which is
either a definition or an expression) and an environment to evaluate it in, and returns a
value and an environment with any new bindings that should be visible to future evaluations.
Your implementation of this function should delegate to eval for expressions, because they
do not introduce any new bindings into the dynamic environment that should persist in the
evaluation of other expressions (though they might mutate the environment).

You also need to complete

val initial_environment : unit -> environment

which supplies the initial dynamic environment to the interpreter. (The reason why
initial_environment is a function that takes in unit has to do with how we implemented
the REPL. It’s not really important.)

Implementation strategy: We recommend that you implement evaluation in the follow-
ing stages. Not only will it allow you to iteratively develop and test the interpreter, but it
is also the order that our test suite will test your interpreter. So you will maximize the par-
tial credit you receive by following this strategy. Note that, even though we have identified
several stages, you will turn in only a single implementation of your interpreter.

• Stage 1: Variables, Booleans, integers, and the course variable in the initial environ-
ment.

• Stage 2: Quote.

• Stage 3: If expressions.

• Stage 4: Builtins, procedure calls to built-ins, and the rest of the initial environment.

• Stage 5: Lambdas and procedure call.

• Stage 6: Define and assignment.

• Stage 7: Let, let-star, and letrec.

13

Hint on Stage 7: It is actually easiest to implement let and let-star expressions by rewriting
the expression to an equivalent expression involving lambda, then applying eval to that
expression. For example, (let ((x e1)) e2) is equivalent to ((lambda (x) e2) e1). To
implement letrec expressions, the equivalent expression will also involve set!.

Problem 4 (0 points)

[written,ungraded] In your file of written solutions, please include any comments you have
about the problem set or about your solutions. This would be a good place to list any known
problems with your submission that you weren’t able to fix, or to give us general feedback
about how to improve the problem set.

Include a statement of what work in this problem set was done by which partner. The ideal
case is that each of you contributed to every problem. But (especially since this problem is
ungraded) please be honest about how you divided the work.

14

	The REPL
	Examples of Scheme3110 programs
	The syntax of Scheme3110
	External representation syntax
	Syntactic sugar in the external representation
	Syntax and semantics

	The initial environment
	Translating from external representation to expressions
	Evaluating expressions to values

