
CS 3110 Fall 2014 Due at 11:59 PM, 10/02/14
Problem Set 3
Version 3 (last modified September 26, 2014)

Revision log

• [09/26/14] Clarified Problem 1, Exercise 1(d). Corrected range of latitudes in Problem
2, Exercise 2(a). Corrected t to N.t in Problem 3, Exercise 4. Clarified requirements
of karma solution in Problem 3, Exercise 4. Clarified that alien symbols must be
non-negative in Problem 3, Exercise 5.

• [09/23/14] Removed extra parentheses around arguments to Node constructor in Prob-
lem 2, Exercise 1. (The supplied code in ps3.zip was correct.) Corrected two minor
English typos.

Objectives

• Use the environment model to explain how programs evaluate.

• Write programs that use OCaml modules and functors.

• Use abstraction and encapsulation to implement data structures.

• Learn about a new data structure, the quadtree.

Recommended reading

The following materials should be helpful in completing this assignment:

• Course readings: lectures 7, 8, 9, and 10; recitations 7, 8, and 9

• The CS 3110 style guide

• The OCaml tutorial

• Real World OCaml, Chapters 4 and 9

What we supply

We provide an archive ps3.zip that you should download from CMS. It provides interfaces,
some template code for modules, and a test input file for one exercise.

1

http://www.cs.cornell.edu/Courses/cs3110/2014fa/lecture_notes.php
http://www.cs.cornell.edu/Courses/cs3110/2014fa/handouts/style.html
http://ocaml.org/learn/tutorials/
https://realworldocaml.org/v1/en/html/index.html

What to turn in

Submit these files in a single ps3.zip on CMS. There should not be any directory structure
inside your zip.

• A file ps3written.pdf containing your solutions to the written problems of this prob-
lem set, which are identified below as “[written]”. This file should also contains any
comments you have about the problem set, as described at the end of this writeup.
And it should contain any information about the karma problem, if you choose to solve
it.

• Files containing your solutions and unit tests for the coding exercises of this problem
set, which are identified below as “[code]”. These files should have the same names as
the files we distribute in ps3.zip.

• A commit log ps3log.txt documenting your activity on the repository.

Partners and source control

You are required to work with a partner for this problem set. Each partner is responsible
for understanding all parts of the assignment. You need not use the same partner(s) as in
previous problem sets.

You are required to use git, a version control system, to work with your partner. Your
repository must be private. We expect the git log you submit to show evidence of work
over a period of time, not just a single commit at the end.

Grading issues

Compilation errors: All code you submit must compile. If your submission does not
compile, we will notify you immediately. You will have 48 hours after the due date to supply
us with a patch. If you do not submit a patch, or if your patched code does not compile,
you will receive an automatic zero.

Naming: We use automated grading, so it is crucial that you name your functions and
order their arguments according to the problem set instructions, and that you place the
functions in the correct files. Incorrectly named functions will be treated as compilation
errors.

Code style: Refer to the CS 3110 style guide and lecture notes. Ugly code that yet
functionally correct will nonetheless be penalized. Take extra time to think and find elegant
solutions.

2

http://www.cs.cornell.edu/Courses/cs3110/2014fa/handouts/style.html

Late submissions: Carefully review the course policy on submission and late assignments.
Verify before the deadline on CMS that you have submitted the correct version.

Function Specification and Testing

Complete each of the coding exercises below by following these instructions:

1. Write a function with the appropriate name and type.

2. Write a specification comment above the definition of the function that documents a
concise and accurate description of the function’s precondition and postcondition. Also
document a brief description of the function (one or two sentences) and/or a brief
description of each argument (a couple of words), if your pre- and postconditions do
not already address those descriptions.

3. Write unit tests that demonstrate the function’s correctness. If the function is named
f, then these tests should be named f_test1, f_test2, . . . f_testn. How many unit
tests should you write? As many as necessary to make you confident that your solution
is correct. Your tests should be in a separate file, as described above.

No Imperative Features

Imperative features—such as ref’s, the Array module, and mutable fields—are not permit-
ted in your solutions to this problem set. You have not seen these features in lecture or
recitation, so we doubt you’ll be tempted.

Problem 1: Semantics (50 points)

Exercise 1.

[written] The type-checking rules for if expressions require the guard of the expression to
have type bool. (In the expression if e0 then e1 else e2, the guard is e0—i.e., the
expression between if and then.) In C, however, guards are required to have type int; the
then branch is executed if the guard is nonzero, otherwise the else branch is executed. In
C, for example,

if (1) {

printf("1\n");

} else {

printf("0\n");

}

will print 1.

Let’s modify OCaml if expressions such that guards have type int rather than bool.

3

http://www.cs.cornell.edu/Courses/cs3110/2014fa/course_info.php#programming_assignments

(a) Give a new type-checking rule for OCaml if expressions that requires guards to have
type int. Your rule should otherwise be the same as the standard OCaml rule. Give
the entire rule, not just a fragment of it.

(b) To use the “Boolean” comparison operators with our new if expressions, they now need
to return integers. Let’s consider the less-than operator <. It should now be a curried
function that returns an integer. Write down its new type (and just its type—nothing
else).

(c) Give a new evaluation rule for if expressions, using the environment model. Your rule
should result in the same semantics as that demonstrated above for C. Give the entire
rule.

(d) OCaml if expressions can be understood as syntactic sugar for match expressions. Show
how to desugar our new kind of integer-guarded if expressions. That is, how could a
compiler rewrite if e0 then e1 else e2 as a match expression, given your new eval-
uation rule from the previous part? Your answer may not use if expressions. Your
answer might involve some bad style, but that’s okay—we’re talking here about compiler-
generated code, not code that humans write.

Exercise 2.

[written] Using the environment model, show how to determine the value of the following
expression under lexical scope.

let x = 1 in

let f = fun y ->

(let x = y+1 in

fun z -> x+y+z) in

let x = 3 in

let g = f 4 in

let y = 5 in

let z = g 6 in

z

Show your work, as in the recitation on the environment model—don’t just give the final
value.

Problem 2: Quadtrees (100 points)

[code] A quadtree is a data structure that provides a sparse representation of 2D space.
Quadtrees are used heavily in Graphics, Computational Geometry, and scientific simulations.
Here, we’ll use quadtrees to implement geographic search; specifically, finding cities that are
within specified latitude and longitude ranges.

4

For this problem, you will implement a variation of quadtrees in which a leaf node repre-
sents a (possibly empty) set of objects, and a non-leaf node represents a rectangular region
of space parameterized by four values x0, x1, y0, and y1:

The node depicted above represents the region of space between x coordinates x0 and x1, and
between y coordinates y0 and y1. The region is partitioned into four equally-sized quadrants.
Each of those quadrants is a subtree. This recursive division of space into quadrants is used
to avoid wasting memory on representation of empty space.

To find an object near point (x, y), a quadtree is traversed starting from the root, walking
down the appropriate sequence of child nodes that contain the point until a leaf node is
reached. The set of objects at that leaf can then be examined. The figure below depicts the
quadtree nodes visited during the search for the black dot:

We provide two files for you to finish implementing: quadtree.ml and city search.ml.
We provide interface files, which specify the functions that you need to implement. We also
provide a parser (described below) for reading information about cities from a CSV file. Note
that compiling that parser requires passing the -l str flag to cs3110.

Exercise 1: Implement Quadtrees.

The type of quadtrees is given in quadtree.ml:

5

type coord = float * float

type region = coord * coord

type ’a quadtree =

Node of region * ’a quadtree * ’a quadtree

* ’a quadtree * ’a quadtree

| Leaf of region * ((coord * ’a) list)

A point or coordinate coord is a pair of an x coordinate followed by a y coordinate. The
first coord of a region represents the lower-left coordinate of that region of space, and the
second coord represents the upper-right coordinate. A region is always defined by these
two coordinates. The first quadtree in a Node is the north-eastern quadrant (I) of the region,
the second is the north-western quadrant (II), the third is the south-western quadrant (III),
and the fourth is the south-eastern quadrant (IV):

Usually, only one object is present in the list at a Leaf. If inserting an object into a
Leaf would make the list have length 2 or longer, the Leaf becomes a Node, and the Leaf’s
objects are distributed into the Node. However, to avoid the quadtree becoming too finely
divided, a Leaf is never separated in this way if doing so would cause the size of the region
to become too small. In particular, if the region already has a diagonal length (from its
lower-left coordinate to the upper-right) that is less than a constant min_diagonal, then
the Leaf remains a leaf, and its list simply grows in length with each new object added at
that Leaf. The order of objects in the list is unspecified. The min_diagonal constant is
provided for you in quadtree.ml; please do not change its value.

Finish quadtree.ml, including adding specification comments and writing unit tests:

a. First, write a specification comment above the type ’a quadtree, documenting your
understanding of how the type represents quadtrees. Then, implement the following
functions.

b. new_tree : region -> ’a quadtree : Initialize a new quadtree that will contain points
within the given region.

c. insert : ’a quadtree -> coord -> ’a -> ’a quadtree : Insert an object at a given
coordinate. If the coordinate is outside the region represented by the tree, raise OutOfBounds.

d. fold_quad : (’a -> (coord * ’b) -> ’a) -> ’a -> ’b quadtree -> ’a : Fold the
function argument over the quadtree, starting with the accumulator argument of type ’a.

6

Apply the function argument to every object in the quadtree. Hint: Think about how
List.fold_left is implemented, then generalize from lists to trees.

e. fold_region : (’a -> (coord * ’b) -> ’a) -> ’a -> ’b quadtree -> region -> ’a:
Fold the function argument over the quadtree, but applying it only to those objects that
are within the region argument. Hint: The region might or might not be entirely con-
tained within some subtree, so think carefully about your implementation.

Exercise 2: Implement City Search.

Implement these functions in city_search.ml, including adding specification comments and
writing unit tests:

a. load_city_data : string -> string quadtree : Load all the cities from the file named
by the string argument, store them in a quadtree, and return that quadtree.

The file format is CSV. Each line in the file is a city. The format of a line is

Latitude , Longitude , Name

We have supplied a very small example file ithaca.csv in the ps3.zip that you down-
loaded. The functionality for reading the file has already been implemented for you in the
provided Parser module, so you don’t need to implement any I/O yourself. Note that
city coordinates are given in terms of latitude and longitude. Latitude ranges from -90.0

to 90.0, and longitude ranges from -180.0 to 180.0.

b. city_search : string quadtree -> region -> string list : Return all of the cities
within a given region, specified by latitude and longitude.

Problem 3: The Natural Numbers (100 points)

[code] In this problem, we explore the capabilities for abstraction provided by OCaml mod-
ules and functors by way of a fundamental mathematical construction: the natural numbers,
N = {0, 1, . . .}. There are many operations we could define on the natural numbers; here
we’ll consider only addition, multiplication, equality, and the less-than ordering. Two nat-
ural numbers, 0 and 1, are particularly interesting because of the way they behave with
addition and multiplication. Here is an OCaml signature NATN representing those aspects of
the natural numbers:

module type NATN = sig

type t

val zero: t

val one: t

val (+): t -> t -> t

val (*): t -> t -> t

7

val (===): t -> t -> bool

val (<): t -> t -> bool

exception Unrepresentable

val int_of_nat: t -> int

val nat_of_int: int -> t

end

The final two values in NATN are used to convert between natural numbers and the primitive
int type. Not all natural numbers are representable with int (consider 2128), and not all
values of type int are representable as natural numbers (consider -1). So the two conversion
functions must sometimes raise the Unrepresentable exception.

Abstract type t represents the type of natural numbers. Implementations of NATN are free
to choose different instantiations t. The exercises below explore some of those implementa-
tions.

Exercise 1: Specification.

Write specification comments for each of the values (i.e., those entries introduced with key-
word val) contained in the NATN signature. Your comments should, as usual, include post-
conditions as well as any necessary preconditions. You should also document the following
properties:

• associativity of addition and multiplication

• commutativity of addition and multiplication

• zero and one are identity elements for addition and multiplication, respectively

• distributivity of multiplication over addition

Choose appropriate places to document those properties, and write down the meaning of
each property in terms of the values of NATN. For example, to document associativity of
addition, you might include at least the following in your specification comment for (+):

(* + is associative: (a+b)+c === a+(b+c) *)

val (+): t -> t -> t

Exercise 2: Implementation with int.

Write a module IntNat that implements signature NATN. The representation type t should
be OCaml’s primitive int type.

8

module IntNat: NATN = struct

type t = int

...

end

A representation issue: For full credit, be careful to correctly implement addition and
multiplication. Your implementation will sometimes need to raise Unrepresentable. Revisit
and, if necessary, update your specification comments in NATN to account for this issue.

Hint: The OCaml manual [section 1.4, Records and Variants] suggests code similar to the
following to check for overflow:

type sign = Positive | Negative

let sign_int (n:int) : sign =

if n >= 0 then Positive else Negative

let sum_overflows (i1:int) (i2:int) : bool =

sign_int i1 = sign_int i2 && sign_int(i1 + i2) <> sign_int i1

Here are two examples:

sum_overflows max_int 0;;

- : bool = false

sum_overflows max_int 1;;

- : bool = true

Exercise 3: Implementation with unary lists.

Write a module ListNat that implements signature NATN. The representation type t should
be int list:

module ListNat: NATN = struct

(* The list [a1; ...; an] represents the

* natural number n. That is, the list lst represents

* length(lst). The empty list represents 0. The values of

* the list elements are irrelevant. *)

type t = int list

...

end

You should include the above specification comment for t in your code. Such comments
are good practice, and we will discuss them in future lectures.

Here are some examples of natural numbers represented with unary lists:

let three = [1; 1; 1]

let four = [10; 8; 1; -1]

let ten = [10; 10; 10; 10; 10; 10; 10; 10; 10; 10]

9

A representation issue: The behavior of your implementation may be undefined if repre-
sentation of a natural number would require more memory than is available in the virtual
machine. But for full credit, be careful that your implementation does not cause stack over-
flows. Recall that tail-recursive functions use constant stack space. Revisit and, if necessary,
update your specification comments in NATN to account for this issue.

Exercise 4: Implementation-independent conversion functions.

Each of our implementations so far has provided its own conversion functions based on
knowledge of the representation type t. We could actually write conversion functions that
are completely agnostic about that type.

Complete the functor NatConvertFn:

module NatConvertFn(N: NATN) = struct

let int_of_nat(n: N.t): int = ...

let nat_of_int(n: int): N.t = ...

end

Add specification comments to the two conversion functions. The comments you wrote while
completing the previous exercises should be helpful.

Karma: The simplest solution involves using the conversion functions of N. We will give
full credit for that solution. An alternative solution involves using (+) or NATN.(+) to add
one successively until reaching the desired int or NATN. That solution runs in O(n) time,
where n is the magnitude of the number being converted.

But for karma (see the course syllabus for a definition of karma), your functions should
be asymptotically more efficient than the O(n) solution identified above, and should not call
the conversion functions of N. If you opt to implement an efficient solution, tell us about
it in your written solutions file, and document the efficiency of it in your code. Hint: For
nat_of_int, think about a binary representation of the naturals. For int_of_nat, think
about finding an interval in which the NATN lies.

Exercise 5: Aliens.

It is the year 3110 CE, and humankind has transcended its earthly shackles and conquered
the vast frontier of space. Humans have established a vast intergalactic commercial empire
and the decimal number system is standard throughout most of the Universe. However,
humans still want to interact with civilizations who have not yet adopted human numbers.
So humanity has called upon the cleverest computer scientists to design a system to make
trading with these civilizations possible.

To make the interface between humans and the other civilizations as simple as possible, we
ask an alien civilization for a mapping from each of their own symbols to a human (indeed,
OCaml) int. That int must be non-negative. We also require the civilization to tell us
which symbol represents 0, and which symbol represents 1.

10

module type AlienMapping = sig

type aliensym

val int_of_aliensym: aliensym -> int

val one: aliensym

val zero: aliensym

end

For example, a civilization might tell us that ♣ = 0, ♦ = 1, and int_of_aliensym(♠)= 10.
Of course, we require that int_of_aliensym maps one and zero to 1 and 0.

Given any AlienMapping, we can produce a NATN that humanity can use. As the repre-
sentation type, we choose aliensym list, and we interpret such a list as the sum of the
ints it represents. Continuing our example, the list [♦;♠;♣;♠;♦] represents the natural
number 22, because 1 + 10 + 0 + 10 + 1 = 22. Implement AlienNatFn, a functor that maps
an AlienMapping to a NATN.

module AlienNatFn (M: AlienMapping): NATN = struct

type t = M.aliensym list

...

end

A representation issue: As with ListNat, be careful that your implementation does not
cause stack overflows. Recall that tail-recursive functions use constant stack space.

Problem 4 (0 points)

[written,ungraded] In your file of written solutions, please include any comments you have
about the problem set or about your solutions. This would be a good place to list any
known problems with your submission that you weren’t able to fix, or to give us general
feedback about how to improve the problem set. Also include any information about the
karma problem, if you choose to solve it.

Include a statement of what work in this problem set was done by which partner. The
ideal case is that each of you contributed to every problem. But (especially since this exercise
is ungraded) please be honest about how you divided the work.

11

