
CS 3110 Fall 2014 Due at 11:59 PM, Thursday, 09/11/14
Problem Set 1
Version 2 (last modified September 4, 2014)

Revision log

• [09/04/14] Revised problem 1f.

Objectives

• Gain familiarity with basic OCaml features such as lists, tuples, functions, pattern
matching, datatypes, and basic features of the OCaml type system.

• Practice writing programs in the functional style using immutable data and recursions.

• Appreciate the impact of code style on readability, correctness, and maintainability.

Recommended reading

The following materials should be helpful in completing this assignment:

• Course readings: lectures 1, 2, 3, and 4; recitations 1 and 2

• The CS 3110 style guide

• The OCaml tutorial

• Real World OCaml, Chapters 1–3

What to turn in

Submit four files on CMS:

1. A file ps1written.pdf containing your answers to the written portions of this problem
set, which are identified below as “[written]”.

2. Files ps1.ml and ps1 test.ml containing your solutions and unit tests for the coding
exercises of this problem set, which are identified below as “[code]”.

3. A commit log ps1log.txt documenting your activity on the repository. You can generate
a git log and store it in ps1log.txt with the following command:

git log --stat >ps1log.txt

1

http://www.cs.cornell.edu/Courses/cs3110/2014fa/lecture_notes.php
http://www.cs.cornell.edu/Courses/cs3110/2014fa/handouts/style.html
http://ocaml.org/learn/tutorials/
https://realworldocaml.org/v1/en/html/index.html

Partners and source control

You are required to work with a partner for this problem set. You can use Piazza to help find
a partner. Once you have found a partner, please join as partners for the PS1 assignment on
CMS. You and your partner should meet early to jointly discuss your approach. Each partner
is responsible for understanding all parts of the assignment. Don’t make the mistake of
assigning half the problems to one partner and half to the other: you’ll both end
up regretting that division of labor when the prelims arrive. Instead, work on the
entire problem set together. Working together is a powerful tool!

You are required to use git, a version control system, to work with your partner. Both
GitHub and BitBucket provide free private repositories to students. We expect the git log
you submit to show evidence of work over a period of time, not just a single commit at the
end.

Private repositories are of the utmost importance. A public git reposi-
tory would share your code with the entire world, including your class-
mates, thus violating the course policy on academic integrity. There-
fore we require that you keep all your CS 3110 related code
in private repositories.

To create a private repository, simply make sure you select the “Private” radio button when
creating a new repository at GitHub, or check the “This is a private repository” check box
on BitBucket.

Instructions

Compile Errors

All code you submit must compile. Programs that do not compile will be heavily
penalized. If your submission does not compile, we will notify you immediately. You will
have 48 hours after the submission date to supply us with a patch. If you do not submit a
patch, or if your patched code does not compile, you will receive an automatic zero.

Naming

We will be using an automatic grading script, so it is crucial that you name your functions
and order their arguments according to the problem set instructions, and that you place the
functions in the correct files. Incorrectly named functions are treated as compile errors
and you will have to submit a patch.

Code Style

Finally, please pay attention to style. Refer to the CS 3110 style guide and lecture notes.
Ugly code that is functionally correct may still lose points. Take the extra time to think out

2

http://www.github.com
http://www.bitbucket.org
http://www.cs.cornell.edu/courses/cs3110/2012fa/handouts/style.html

the problems and find the most elegant solutions before coding them up. Good programming
style is important for all assignments throughout the semester.

Late Assignments

Please carefully review the course website’s policy on late assignments, as all assignments
handed in after the deadline will be considered late. Verify on CMS that you have submitted
the correct version, before the deadline. Submitting the incorrect version before the deadline
and realizing that you have done so after the deadline will be counted as a late submission.

3

No Imperative Features

Imperative features—such as ref’s, the Array module, and mutable fields—are not permit-
ted in your solutions to this problem set. You have not seen these features in lecture or
recitation, so we doubt you’ll be tempted.

Problem 1: (10 pts)

[written] Give the OCaml type (if any) of each of the following OCaml expressions, and also
give the value to which each well-typed expression reduces. For each expression that is not
well-typed, briefly explain why.

(a) 22 + 20

(b) (+) 22 20

(c) [1;9;4;-3.;2]

(d) 2::4::[6;8;10]

(e) ["zar", "doz"]

(f) ()

(g) Some 3110

(h) (fun zar -> zar*zar) 42

(i) let f x = x + 1 in f f 10

(j) let f x = x + 1 in f (f 10)

Problem 2: (10 pts)

[written] Give OCaml expressions that have the following types.

(a) int

(b) string list

(c) float list -> float

(d) int option -> int

(e) int list -> int list -> int list

(f) (int list -> int list) -> int list

(g) int list -> (int list -> int list)

(h) int*char list -> (int * char) list

(i) time

(j) time -> int

For parts i and j, assume the following type definition:

type time = {hour:int; minute:int; am_pm:string}

4

Problem 3: (20 pts)

[written] The following function executes correctly, but it was written with poor style. Your
task is to rewrite it with better style. Please consult the CS 3110 style guide on the course
website. You should invent a new name for the function that appropriately conveys what it
does.

let rec zardoz ((a:int list), (b:int list)) =

if (List.length(a) = 0 && List.length(b) = 0) then (b) else

if (List.length(b) = 0) then List.hd(a)::List.tl(a) else

if (List.length(a) = 0) then [] @ b else

if (List.hd(a) < List.hd(b)) = true then [List.hd(a)]

@ (zardoz((List.tl(a)), b)) else [List.hd(b)]

@ (zardoz(a, (List.tl(b))))

Problem 4: (120 pts)

[code] Complete each of the exercises below by following these instructions:

1. Write a function with the appropriate name and type.

2. Write a specification comment above the definition of the function that documents:

• A brief description of the function (one or two sentences).

• A brief description of each argument (a couple of words).

• A concise and accurate description of the function’s precondition and postcondi-
tion.

3. Write unit tests that demonstrate the function’s correctness. If the function is named
f, then these tests should be named f_test1, f_test2, . . . f_testn. How many unit
tests should you write? As many as necessary to make you confident that your solution
is correct. Your tests should be in a separate file named ps1 test.ml.

Exercise 1.

Write a function is_mon_inc: int list -> bool that takes an integer list and returns
whether that list is monotonically increasing. For example,

• is_mon_inc [1;2;3;6;9] = true

• is_mon_inc [1;3;5;7;5;9] = false

• is_mon_inc [1;1;2;3;4;4] = true

5

http://www.cs.cornell.edu/Courses/cs3110/2014fa/handouts/style.html

Exercise 2.

Write a function is_unimodal: int list -> bool that takes an integer list and returns
whether that list is unimodal. A unimodal list is a list that monotonically increases to some
maximum value then monotonically decreases after that value. Either or both segments
(increasing or decreasing) may be empty. For example:

• is_unimodal [1;2;3;6;9;5;4] = true

• is_unimodal [1;3;5;7;5;6] = false

• is_unimodal [1;1;2;3;4;4;3;2;2;-1] = true

• is_unimodal [] = true

• is_unimodal [1;1;1] = true

• is_unimodal [1;2] = true

• is_unimodal [2;1] = true

Exercise 3.

Write a function powerset: int list -> int list list that takes a set S represented
as a list and returns the powerset of S. Recall that the powerset of a set S is the set of all
subsets of S. For example:

• powerset [1;2;3] = [[]; [1]; [2]; [3]; [1;2];[1;3];[2;3]; [1;2;3]]

• powerset [] = [[]]

The order of the subsets in the powerset and the order of the elements in the subsets do not
matter.

Hint: Consider the recursive structure of this exercise. Suppose you already have p, such
that p = powerset s. How could you use p to compute powerset (x::s)?

Exercise 4.

Write a function rev_int: int -> int that takes an integer i and returns an integer whose
digits are the reverse of i. The sign should remain unchanged. If the reversed integer is
larger than max_int, the behavior is undefined: your function can do whatever you want.
For example:

• rev_int 1234 = 4321

• rev_int 4 = 4

• rev_int -1234 = -4321

6

• rev_int -10 = -1

• rev_int 1111111111 = 1111111111

• rev_int 1123456789 = (*undefined. 9876543211 > max_int on the 3110 VM *)

Exercise 5.

Flattening is the process of converting a list of lists into a single list (see List.flatten).
Write the reverse operation unflatten: int -> ’a list -> ’a list list option that
takes an integer k and list lst and breaks it up into a list of lists, each of size k. In the case
that List.length lst is not a multiple of k, the last list is allowed to be of size less than
k. If k ≤ 0, then unflatten k l should return None. For example:

• unflatten (-1) [1;2;3;4;5;6] = None

• unflatten 0 [1;2;3;4;5;6] = None

• unflatten 2 [1;2;3;4;5;6] = Some [[1;2]; [3;4]; [5;6]]

• unflatten 3 [1;2;3;4;5;6;7;8] = Some [[1;2;3]; [4;5;6]; [7;8]]

• unflatten 6 [1;2;3;4;5;6] = Some [[1;2;3;4;5;6]]

• unflatten 7 [1;2;3;4;5;6] = Some [[1;2;3;4;5;6]]

Exercise 6.

A Roman numeral can be represented as a list of letters from the set {I, V, X, L, C, D, M}.
The value of each letter is as follows:

Column 1 Column 2
I 1 V 5
X 10 L 50
C 100 D 500
M 1000

The letters are usually ordered from greater-valued to smaller-valued. If that ordering is
broken, it means that the immediately preceding (lower) value is deemed to be “negative”
and should be subtracted from the higher (out of place) value. For example, IV represents
4, and XC represents 90.

For purposes of this problem, define a valid Roman numeral as follows:

1. A letter from Column 1 may never appear more than three times in a row, and there
may never be more than one additional occurrence of that letter.

2. A letter from Column 2 may never appear more than once.

7

3. Once a letter Z has been used in a “negative” position, all subsequent letters except
the immediately following character may not be greater than Z.

For example, MMMCX is valid Roman numeral, but XCMMM is not.

We can define a type for Roman numerals in OCaml as follows:

type numeral = I | V | X | L | C | D | M

type roman = numeral list

Complete int_of_roman, assuming only valid Roman numerals as input:

let rec int_of_roman (r : roman) : int =

let int_of_numeral = function

| I -> 1

| V -> 5

| X -> 10

| L -> 50

| C -> 100

| D -> 500

| M -> 1000 in

???

For example:

• int_of_roman [I; I; I] = 3

• int_of_roman [X; L; I; I] = 42

• int_of_roman [M; C; M; X; C; I; X] = 1999

Exercise 7.

[written,ungraded] At the end of your file of written problems, please include any comments
you have about the problem set or about your solutions. This would be a good place to list
any known problems with your submission that you weren’t able to fix, or to give us general
feedback about how to improve the problem set.

Also, include a statement of what work in this problem set was done by which partner.
The ideal case is that each of you contributed to every problem. But (especially since this
exercise is ungraded) please be honest about how you divided the work.

8

