
Problem Set 6: Tron
Assigned: April 11, 2013 Due: May 2, 2013

Design meetings: April 14 - 18

1 Updates.

None yet.

2 Introduction.

In this problem set, you will develop a game called Tron. There are few constraints on how
you can implement this project, and you will have greater freedom. However, this does not
mean you can abandon what you have learned about abstraction, style, and modularity.
Rather, this is a chance for you to demonstrate your grasp of all three.

You should begin by carefully designing your system. You will be required to attend a
design meeting that is worth part of your score, where you will present and discuss this
design with a course staff member.

On TBA, there will be a tournament where you may submit your bot to compete with other
students’ bots. There will be free food, and the winners will receive bragging rights and
have their names enshrined eternally in the CS 312/3110 Tournament Hall of Fame.

Note that there is also a written problem in this problem set. It can be found at the end of
this document.

2.1 Reading this document.

The non-native types discussed in this text are defined in definitions.ml. Constants
follow the naming convention of beginning with a lowercase c, and having the rest of
the name in all caps. For instance, cTIME LIMIT specifies the time limit for the game.
The reason for this mysterious c is that OCaml doesn’t allow value names to begin with
capital letters – only type constructors can do that. It may help to have these files open for
reference, as you read the writeup.

Updates to this writeup will be marked in red.

2.2 Point breakdown.

1. Design meeting: 5 points

2. Game: 30 points

3. Bot: 25 points

4. A-star: 10 points

5. Documentation: 10 points

6. Written problem: 20 points

1



CS 3110 PS6: Tron

3 Rules.

Tron is played in a two-dimensional, top-down perspective. Each player begins with a
team of riders, which move around a grid in straight lines. As a rider moves, it leaves a tail
on the spaces it has traversed, which acts like a wall. When any rider either hits a tail or
goes out of bounds, it is removed from the game. The players direct the movements of all
their riders at once. Once a player has lost all of their riders, they lose, and their opponent
wins. The goal is therefore to survive longer than your opponent.

3.1 The board.

The board is a grid whose dimensions are given by cNUM ROWS and cNUM COLUMNS. A tile
on the grid is identified by coordinates (col, row). The row index varies on the vertical
axis, increasing as you move downward, and the column index varies on the horizontal
axis, increasing to the right. All indices are zero-indexed. (0,0) corresponds to the top-
left corner of the board.

3.2 Riders.

The rider is the basic unit controlled by a player. At any point in time, an active rider (one
that has not yet crashed) is represented as a record of five fields.

• id: A unique integer used to refer to this rider.

• orientation: The direction the rider is currently moving in. This is any one of
North, South, East, and West. In the absence of any commands to change orien-
tation, the rider will continue moving in this direction.

• tile: The location of the rider, given by coordinates as described in the previous
section.

• modifier: Information about what special effects are currently active on this rider.
Described more in detail in the Items section.

• invincibility timer: Described in the Items section as well.

3.3 Tails.

As stated, riders leave tails on every space that they move across. Tails act as walls. When
a rider enters the same space as a tail, unless it has an item effect active, it crashes and
is eliminated from the game. A tail itself has no particular attributes; all that needs to be
recorded is the tile it is placed on.

For instance, if a rider is on square (4,2), and it moves to square (4,3), then a tail will
be placed on (4,2). Future riders will then not be allowed to enter square (4,2), and
those that attempt to do so will be eliminated (except under specific circumstances).

Note that the tail is not placed until after the rider leaves the square.

2



CS 3110 PS6: Tron

3.4 Items.

There are two items in our game.

The first is a shield. After a rider activates a shield, the first time it collides with a tail,
rather than the rider being killed, the tail will be removed and the rider will survive. After
the first such collision, the shield effect will be removed. In other words, shields only last
for one collision. Additionally, shields do not protect riders from being killed by going
out of bounds. However, shields have no time limit; they last until the first time the rider
hits a tail.

The second item is invincibility. Once a rider activates invincibility, it cannot be killed by
tails, though it will still die from going out of bounds. Invincibility does have a time limit,
which is the constant cINVINCIBILITY TIME.

For each rider, the record field modifier should be used to record whether it has a shield,
invincibility, or both active. If invincibility is active, then invincibility timer should
be used to track how much time it has remaining. Note that this timer is measured in game
steps, not seconds.

If a rider has both items active, then the shield cannot be lost until after the invincibility
expires. In other words, the invincibility effect has priority over the shield.

3.5 Collecting and using items.

Riders do not have individual inventories; instead, the number of items possessed is an
attribute of the entire team. There are separate counters for shields and invincibility. Each
team begins with a number of each, as defined by the constants cNUM INITIAL TEAM X,
where X is either SHIELD or INVINCIBILITY.

Beyond these, there are initially a number of items placed on the field, determined by
cNUM INITIAL FIELD X. The items are placed on random squares. Riders can collect one
of these items by simply moving onto the space. The team’s count for that item will then
be increased by one, and the item will be removed from the field.

Any rider on a team can use an item if and only if that team possesses at least one of that
item at that time. The team’s item count is then decreased by 1, and the effect is applied.

3.6 Winning.

When a team’s riders have all crashed, that team loses and the opposing team wins. If
this doesn’t happen within the time limit, then the winner is the team with more riders
surviving at the end. If both teams have an equal number of riders, or they both lose their
last rider at the same time, then the game is a tie.

4 Game module.

The module in game.ml is responsible for implementing all of these rules. The game
server will initially call these functions, in order.

1. initGame: This initializes and returns a value of type game. This game’s state
should reflect that the game has not yet begun.

3



CS 3110 PS6: Tron

2. initFieldItems: This places items on random spaces. You should place a num-
ber of shields and a number of invincibilities, defined by the relevant constants
cNUM INITIAL FIELD X, all on different random spaces.

After these have been called, the game will begin. The server will call these functions to
advance the state of the game. For all of these functions, the argument g is the game object
that was first created.

• handleAction: This is called when the server receives a command from one of the
AIs. The argument act is the command sent by the AI, and c is that AI’s color. The
game state should be updated to reflect the command that was just sent.

• handleStatus: This is called when the server receives a request for data from an
AI. The AI can request the status of the game’s riders, items (both owned and on the
field), and tails. The argument status is the request sent by the AI. The requested
information should be returned.

• handleTime: This is called by the server at regular intervals (the precise timing is
given by cUPDATE TIME, in seconds). On each call, the game should be updated by
one time step, as described below.

In one game step, you should perform the following, in order.

1. Check to see if the game is over. The game is over if it has gone on for cTIME LIMIT
(which is in seconds), or one team has lost all its riders. If the game has ended,
determine a winner. Otherwise, continue.

2. Update the positions of all riders, and place a tail on the square each rider was pre-
viously occupying. Every rider moves one space in the direction it is facing. North
corresponds to up, and the other directions follow from that.

3. Remove riders that have moved out of bounds. Additionally, for each rider that has
moved onto a tail, if the rider does not have a shield or invincibility active, remove
that rider. If it does have a shield or invincibility, then remove the tail instead. In this
case, if the rider was using a shield, remove the shield effect.

4. If two riders move onto the same space, then if one has an active item and the other
does not, then only the one with the item survives (and if the item was a shield, it
is removed). If one has a shield and the other has invincibility, then the one with
the shield dies and the invincible one survives. In all other cases, they both die. If
both die, no tail will be placed on that square, and no item will be collected from that
square.

5. Of the surviving riders, check if any of them have moved onto a space with an item.
For each one that has, remove the item from the field and add it to the team’s count.

6. Update invincibility timers. The timer is in game steps, so simply subtract one from
each active timer. If a rider’s timer hits zero, then remove the invincibility effect. If
that rider is on a tail when its invincibility ends, then it survives for this turn.

4



CS 3110 PS6: Tron

5 Communication.

Our game uses a client-server framework. What this means is that the game server and the
players (clients) are running as separate processes. The server is responsible for receiving
commands from the players, and updating the game state. The clients are allowed to keep
track of whatever information they want, but they need to send commands to the server in
order to perform actions or receive data. The protocols for this communication are given
by the type command in definitions.ml.

5.1 Action commands.

These are commands that bots may send in order to cause some change in the state of
the game. These commands are of type action. On the bot’s side, they are sent by call-
ing send action. Then, on the server side, handleAction is called with the received
command as the argument. The server should then perform the action, and return either
Success or Failed based on the result.

There are two possible commands of this type.

• ChangeOrientation(id, orientation): Tells the server to change the orien-
tation of rider id to the new orientation. Fails if that id doesn’t exist, or if the
rider doesn’t belong to the player who sent the command.

• UseItem(id, item): Tells the server to use item on rider id. Fails if the id
doesn’t exist, or if the team doesn’t have any of that item.

These commands should take effect instantaneously; the rider’s state should immediately
be updated to change orientation or have an active item.

5.2 Status commands.

The client is also able to send certain commands to request information from the server
about the game state. These commands are of type status. The bot sends these requests
by calling get status, and the server receives them with a call to handleStatus, which
should return the appropriate Data.

There are five possible commands of this type.

• TeamItemsStatus(color): The server should respond with a list of numbers of
items owned by the team color.

• FieldItemsStatus: The server should respond with the list of all items on the
map, along with their positions.

• TeamStatus(color): The server should respond with the list of all surviving rid-
ers of the team color, as well as the items possessed by that team.

• TailStatus: The server should respond with the list of positions for all tails on the
map.

• GameStatus: The server should return all information about the game: data for
both teams, as well as for field items.

5



CS 3110 PS6: Tron

6 GUI.

The GUI client for this game is written in Java, and can be found in the gui directory. It
has already been written for you. We have supplied you with a file gui client.jar,
which you should run using java -jar gui client.jar to start the GUI.

The GUI does not update on its own – instead, the game server is responsible for sending
graphical updates to the GUI. The server will automatically listen for GUI clients to send
updates to. However, if a GUI connects midway through the game, it will have missed the
InitGraphics update. This means that you need to connect the GUI before the bots.

6.1 Sending messages.

We have provided you with a module Netgraphics with functions to send updates to
the GUI. Of these functions, init and send updates are both called automatically by
the server, so you will not need to use these yourself.

Generally, in order to send a graphics update, you should call Netgraphics.add update
with the update type you wish to send. This buffers the update so that it will be sent to
the GUI at the next time step. The one exception to this is InitGraphics, which needs to
be sent by itself, and should be sent directly using Netgraphics.send update instead.

6



CS 3110 PS6: Tron

6.2 Graphics commands.

Command Arguments Meaning

InitGraphics Tells the GUI to initialize an empty board, in
preparation for a new game.

UpdateInventory color, item data Updates the display to show that team color
has a quantity of items as indicated by
item data.

UpdateRider id, orientation,
tile

Updates the rider with id to be at location
tile, facing orientation.

ModifyRider id, modifier,
flag

Applies or removes an item’s visual effect on
rider id. modifier is the effect to toggle.
flag specifies whether to turn it on (if true)
or off (if false).

PlaceItem item, tile Adds the specified item to the board, at loca-
tion tile.

PlaceRider id, tile, color Adds a rider with the specified color to the
board at location tile, assigning it the given
id. This id will be used by the GUI to refer to
this rider in the future.

PlaceTail id, tile, color Adds a tail with the specified color to the
board, at tile. The id belongs to the rider
that generated the tail.

RemoveItem tile Removes the item from tile.
RemoveRider id Removes the rider id from the board.
RemoveTail tile Removes the tail from tile.
Countdown num Displays a countdown timer on the screen,

starting from num and counting down.

GameOver result Displays that the game as ended, and that
result was the outcome.

7 A* search.

7.1 Review of Dijkstra’s algorithm.

In designing your AI to play the game, you may want to be able to find shortest paths
between tiles – from tile s to tile t, for instance. Dijkstra’s algorithm, which you’ve almost
certainly seen before, is the most well-known algorithm for finding such paths.

The key to the algorithm is that, at every stage, every node n has an associated value g(n),
which is the shortest known path from s to n; if no path is known, g(n) =∞. Thus, initially,
g(n) =∞ for all nodes, except for g(s) = 0.

At every step, we choose the unexplored node with the lowest g(n) to expand; for every
neighbor m, we update g(m) = g(n) +w(n,m), where w gets the edge weight between the
two. This behavior is usually accomplished by a priority queue, with g as the priority. If
we expand t, we are done, and we trace the path backwards from t back to s to reconstruct
it. On the other hand, if we run out of nodes to expand, then there is no path.

7



CS 3110 PS6: Tron

7.2 Incorporating heuristics.

Dijkstra’s can be quite slow in spaces with many possible paths, since it will tend to explore
paths in all possible directions – even paths that seem to move farther away from the goal!
For the sake of efficiency, we’d like to avoid exploring these paths, if possible. We will
accomplish this by using a heuristic.

Recall that in Dijkstra’s, we used g(n), the known path cost to node n, as our priority. We
will modify this slightly by defining a function h. h(n) is a heuristic – an estimate of the
remaining distance from n to the goal t. Then, rather than using g(n) as the priority, we
use g(n) + h(n). Intuitively, we expand the node that we think will give the shortest path,
based on the known path cost as well as our estimate.

h can be any function that is admissible: h(n) must never exceed c(s, n), the actual shortest
path from s to n. In other words, h must always underestimate the true distance. With
an admissible heuristic, it can actually be proven that A* is both correct and optimal – it
considers fewer nodes than any other search algorithm using the same heuristic.

Aside from the change in priority, the algorithm proceeds identically to Dijkstra’s. In fact,
Dijkstra’s can be viewed as a special case of A*, with h(n) = 0.

7.3 Your task.

In the file shared/a star.ml, we have supplied you with a functor MakePQueue, which
can be applied to any Set.OrderedType to create a priority queue module. Complete the
function a star : tile -> tile -> tile list -> (tile -> tile -> float)
-> tile list that, given a source, a destination, a heuristic function, and a set of tails
(obstacles), computes the shortest path using A*. The path consists of the list of tiles,
in the order they are traversed from the source to the destination. Use the values in
constants.ml as the boundaries of the board.

The main things you will have to think about are how to keep track of each node’s g(n), and
how to reconstruct the path once you’ve reached the destination. Once you’ve completed
this part, you are free to use a star anywhere else in your program. (Hint: use it.)

In particular, you should implement the functions euclidean and manhattan to test A*
with. Euclidian distance is the straight line distance between two points, while Manhattan
distance is the sum of the difference of the x and y coordinates of source and destination
coordinates.

7.4 Karma

Come up with a heuristic that performs better than the above two heuristics. You may
choose to concentrate on a certain type of graph structure if you wish. The internet is your
friend. If you decide to attempt this part, come up with your heuristic and make a table
or graph comparing its performance with the two given functions. Also, write a formal
explanation about how you created the algorithm and how it is a better estimate.

8



CS 3110 PS6: Tron

8 Provided source code.

There are many provided code files for this assignment, most of which you will not need
to edit at all. In fact, you will only need to modify files in the game and team directories,
as well as the build scripts. Here is a list of all provided files, and a summary of their
contents.

build * Scripts for building the game and teams.

game/game.ml Stub module containing functions for handling
actions, status requests, and time steps.

game/game.mli Interface for game.ml.

game/netgraphics.ml Module for sending updates to the GUI.

game/netgraphics.mli Interface for netgraphics.ml.

game/server.ml Module that starts the game and handles commu-
nication between the bots and game.

shared/a star.ml Module for A* search.
shared/a star.ml Interface for A* search.
shared/connection.ml Connection helper module.

shared/connection.mli Interface for connection helper module.

shared/constants.ml Definitions of game constants.

shared/definitions.ml Definitions of game datatypes.

shared/thread pool.ml Thread pool helper module.

shared/thread pool.mli Interface for thread pool helper module.

shared/util.ml Helper functions for your general use. It may be a
good idea to familiarize yourself with these func-
tions, as they may simplify your tasks, or make
debugging easier.

team/team.ml Basic framework for interactions between AI
clients and the game server.

team/babybot.ml Stub for a basic AI.

In implementing the game, you should only need to make modifications to game.ml, as
well as to any modules you may wish to add. You will not have to modify the server or
GUI modules.

Likewise, when implementing your AI bot, you will not need to modify team.ml. You
are free to base your bot on the provided babybot.ml.

9



CS 3110 PS6: Tron

8.1 Server module.

It may help to understand how the server works. At a high level, the server does the
following things.

1. The server calls Netgraphics.init, which begins accepting connections from GUI
clients.

2. The server waits for enough AI teams to connect to the game. Once they have, after
a short countdown, the server begins running the game.

3. The server calls Game.handleTime at regular intervals, advancing the game state
once every time step.

4. Whenever the server receives an action from an AI, it calls Game.handleAction
with that command as the argument. Similarly, when it receives a status request, it
calls Game.handleStatus with the request as the argument.

5. The server also calls Netgraphics.send updates at regular intervals to update
the GUI.

8.2 Game state.

Keep in mind that you are free to add whatever modules you wish. In fact, for keeping
track of the game state, we strongly suggest creating a separate State module, rather
than putting all your code in game.ml. In fact, it may be a good idea to create multiple
modules, one for each aspect of the game state – riders, team inventories, and so on.

9 Running the game.

You will need to launch four command prompts to run the game.

9.1 Game server.

In the folder ps6/game, run the script build game.bat to compile the game. Once this
succeeds, run game.exe.

9.2 GUI.

In the folder ps6/gui, run java -jar gui client.jar. At the bottom of the inter-
face, enter the server’s connection information (localhost, post 10501 by default), and press
Connect.

9.3 Team.

In the folder ps6/team, run build team.bat botname or build team.sh botname,
where the bot you wish to build is in the file botname.ml. After that, run botname.exe
localhost 10500 to start the bot. Run this in two separate command prompts, and
watch the magic happen!

10



CS 3110 PS6: Tron

10 Your tasks.

This project consists of many parts. Make sure you spend time thinking about and de-
signing each part before writing code. This is a large project, so start early. Remember, no
extensions!

10.1 Design meeting.

The first thing you will have to do is come up with a design for your implementation of
Tron, and meet with a course staff member to discuss it. Design review slots will be posted
on CMS. If you cannot sign up for any of those time slots, contact the course staff and we
will try to accomodate you.

At the meeting, you will be expected to explain the design of your system, including the
data structures you will use. You will need to outline the interfaces of the modules you
plan to create. In designing these interfaces, think about what functionality each module
needs to have, what information needs to be stored by each one, and how the interface can
be made as narrow as possible.

You will also have to discuss how you plan to manage your time to complete the project,
and how work will be divided. Everyone in the group should be prepared to discuss the
plan. At the end, we will give you feedback on your design.

10.2 Implementing the game.

You will then have to implement Tron, completing the functions in game.ml, and adding
any additional modules that you may require. You should only add files to the game and
team directories. Your implementation should conform to the specifications described in
previous sections. You may use our sample bot to test your program, but you will most
likely want to write some extra tests of your own.

10.3 Designing a bot.

Your next task is to implement a bot that can play Tron. As discussed, you may use
babybot.ml as a model for your bot. We will be running your bot against test bots of
our own, and your score will depend on your performance.

Additionally, there will be a tournament where you will be able to see your bot compete
against other students’ bots. There are many possible approaches – this is your chance to
be creative, and to have fun coming up with a strategy.

10.4 Documentation.

Your final task is to submit a design overview document for this project. Since this project
is quite large and open-ended, documentation becomes even more important.

The design overview document should cover both your implementation of the game, and
the bot you created. For the game, you should discuss the structure and purpose of each
of your modules, and your reason for creating them. For the bot, you should discuss what
strategies you experimented with, and what your final approach was.

11



CS 3110 PS6: Tron

10.5 Guidelines.

Here are some things that you should keep in mind while working on this project.

• Your design is important. This project is quite large and complex. If you do not have
a solid and complete design, you will quickly get bogged down in details when you
begin to implement it. Before writing any code, you should have a very clear idea of
all of the following.

– Concurrency issues, and how you will address them.

– Information that needs to be stored to fully represent the game state.

– How to store and access that information efficiently.

– What the interfaces of your modules will be.

– Invariants that your modules will preserve.

– What modules will enforce those invariants.

• Think about how to organize your program into loosely coupled modules. It will
be difficult to debug your project unless you can develop modules that encapsulate
important aspects of the game. Design your modules carefully so that you can work
effectively with your partner and do unit testing of each module.

• Preserve the relationship between game state and graphics. Recall that updating
one doesn’t automatically update the other. If you are watching the game and some-
thing goes wrong, the problem could either be with the game itself, or with the GUI
updates. Further, just because the GUI looks correct doesn’t mean the underlying
game state is necessarily correct. It would behoove you to maintain an invariant
between the two.

• Problems in the game may actually be problems with the bots. If you are using
your own bots to test, make sure their behavior is correct.

• Implement and test the actions one at at time. Start with the easier ones, and once
you are sure those are correct, move on to the more complex ones.

• Leave yourself enough time to write the bot. The bot is worth almost as much as
the game, so don’t put it off until the end.

• Lead TA’s. If you have specific questions that need to be resolved, direct them to Ran-
jay Krishna(in charge of the game and bot.), Pablo Sarmiento (in charge of the GUI.),
Chris Yu (in charge of A-star.) and Ben Carriel (in charge of the Written Problem.).

12



CS 3110 PS6: Tron

11 Written Problem: Reasoning about Persistence

11.1 Functional Data Structures

In this exercise, we are going to pin down some of the differences between functional data
structures and their imperative counterparts. As you have probably seen throughout the
semester, there are two major differences between these two styles of data structure design:

1. Functional data structures lack destructive updates (i.e. assignments)

2. Functional data structures are automatically persistent, meaning they support mul-
tiple versions, whereas imperative data structures are ephemeral, meaning that they
only support one version at a time.

With the inclusion of the ref cell, OCaml forfeited the first property above. We are going
to explore the consequences of the second.

The way to think of persistence is that it gives you the ability to ask questions about past
states of the data structure, which is very useful in practice. The persistence model we will
start with is known as partial persistence. In this model the user can query any previous
version of the data structure, but only the most recent version ever gets updated. Typical
operations would be

val query : ’a structure -> version -> unit
val write : ’a structure -> version -> ’a -> unit

11.2 Preliminary Model

Many of the data structures we have encountered in the course could be thought of as
bundles of nodes of some bounded size, with entries for some data. By data we mean
either actual data, or a pointer to another node. You also have these operations on the
structure:

val field : ’a structure -> ’a
val update : ’a -> ’a structure -> unit
val destroy : ’a structure -> unit

If we were to try to generalize this into an OCaml data type we would get something like
the following:

module Node : Set.OrderedType = struct
type ’a node = Node of ’a data ref
and ’a data = Data of ’a | Pointer of ’a*’a node ref

type ’a t = ’a node

(* equality tested on the representation. *)
let compare Node(d) Node(d’) =

match d,d’ with
| Data (x), Data(y) -> if x=y then 0 else -1
| Pointer (p), Pointer(p’) -> if p==p’ then 0 else -1

13



CS 3110 PS6: Tron

| _ -> -1
end

Note that the above would require a polymorphic Set.OrderedType, which isn’t in the
OCaml standard. We would have to implement it ourselves! Now we just need to wrap a
bunch of ’a Node.t’s into a set. The right tool for the job is a higher-order functor.

module type DATASTRUCTURE = sig
type t (* internal data structure type *)
type v (* internal version representation *)
module M (* the underlying set of nodes *)
exception Invalid_representation (* if a node gets too big *)
val cUPPER_BOUND : int (* bound on size *)

(* Structure level operations *)
val query : t -> v -> unit
val write : t -> v -> M.t -> unit

(* Node level operations *)
val field : ’a M.t -> ’a
val update : ’a M.t -> t -> unit
val destroy : ’a M.t -> unit

end

(* functor to create the data structure *)
module DSMake = functor (M : Set.S) -> DATASTRUCTURE

(* Compose the functors to get a data structure! *)
module DataStructure = DSMake (Set.Make (Node))

Awesome! We have built an abstraction in OCaml that captures our intuitive notion of
what a data structure is. In the following exercises, we will consider a few possible imple-
mentations and prove some facts about their properties.

11.3 Implementing Partial Persistence

Now that we have a basic framework, we can start addressing the main questions: Is it
possible to implement (functional) partial persistence efficiently? CS Lords of the past
answered this question affirmatively in the 80’s with the restriction that the in-degree of
each node is O(1). In our model, we would have to include a rep ok function in the
DataStructure struct, and also come up with a good number for cUPPER BOUND.
Your task is to reconstruct the proof.1

Exercise 1:

The main idea of the proof is to add more data to the ’a node type so that we have infor-
mation when implementing the functors that build a data structure (this will complicate
the code a lot). Let’s go over the changes:

1Don’t worry, we’ll walk you through it

14



CS 3110 PS6: Tron

1. Add a “read-only” area for all of the data and pointers.

2. Add a writeable area for “back-pointers”. A node n will have a back-pointer to an-
other node m if m has a pointer to n.

3. A “log” section that has entries of the form (’a, version). This will store the
modifications that the user will make to the data structure in the future.

Your first task is to write a high-level English description of how one might implement
these changes. Submit the following:

1. Show how you would accommodate the proposed changes by modifying the type
signatures in the provided Node module.

2. Remember: we are shooting for an efficient implementation. Describe how you will
make sure that the size of the back-pointer and log sections of each node don’t get
excessively large. (Hint: how does cUPPER BOUND come into play?)

Below is a visual representation of how this abstraction would work for a linked-list style
data structure:

The above is a partially persistent linked-list after a single update: writing the value 20 to
the leftmost node.

Here is the structure after a second update: updating the pointer contained in the left-most
node, with a new pointer containing the value 200.

Exercise 2:

The above shows the intuition for how the data structure queries work. Your next task is
to come up with reasonable implementations of the following operations:

1. Describe how to implement the read operation in the DataStructure module. A
short English description or pseudocode will suffice.

15



CS 3110 PS6: Tron

2. Give a brief description of how to implement the write operation in the DataStructure
module. (Hint: This should be clear if the mod log isn’t full. If the the log is full, add
a level of indirection.)

11.4 Performance Analysis

All right, now we have to actually justify to ourselves that our implementation is actually
efficient and useable in the “real-world”. Your write operation probably had some sort of
recursive call in it (if not, then back to the drawing board!). We need to put a bound C on
the number of recursive calls that we make, or we risk the runtime blowing up! For certain
data structures like lists or trees, we know C at the onset (why? justify this to yourself).

11.4.1 Idea of the Proof

So how did we know that this framework would be effective ahead of time? When you
are out in the wild designing data structures for your applications, it is important to think
about why your implementation will perform well. In our case, the intuition is this:

For every node in the old data structure, the new data structure is going to
have a bunch of nodes: the current version, along with all of the old ones. This
means that we will have cheap reads. Writes will also be cheap, as long as
we’re not filling up the log. If we do fill up the log, we know that the log will
get sparser as we go deeper in the recursion.

(If your operations don’t have the above properties, you should rethink your implementa-
tion!)

When you encounter any data structure that performs both frequent, cheap operations and
occasional slow operations and want to analyze its performance, your first instinct should
be to conduct an amortized analysis. That is the strategy we will employ.

Exercise 3:

Ok, judgment time. Discuss the performance of the partial persistence implementation
using the physicists’ method. In particular, provide the following two analyses:

1. Space Complexity: By making the proposed changes to our nodes, we have intro-
duced a lot of overhead in our implementations. Give an asymptotic bound (i.e. Big-
O notation) on the space overhead of the implementation. (Hint: Use cUPPER BOUND
and C.)

2. Time Complexity: Determine the amortized runtime of each of the structure level
operations in the DataStructure module. Here are some things to think about to
point you in the right direction:

(a) What is the cost of writing to a node? Write out a good function for this. Then
phrase your potential function in terms of the cost function. (Hint: Use your
cost function to “deal with the past”, and then write your potential function in
terms of the cost function and “dealing with the present”. What are the factors
that blow up the runtime in both cases? How can you fiddle with the constants
to save enough potential for the slow operations?)

16



CS 3110 PS6: Tron

(b) Termination: Does every operation terminate? Remember, the back pointers
might form cycles (think about implementing a tree), how do you make sure we
won’t get stuck? (Hint: what happens to the potential function in the recursive
step)

(c) Don’t write too much! All of these questions have short (a few sentences) an-
swers. That, plus a little algebra is all you need. If you find yourself making
things complicated, go back and rethink your cost and potential functions.

Good Luck!

TO SUBMIT: The solutions to Exercises 1,2 and 3 in .pdf format.

17



CS 3110 PS6: Tron

12 Final submission.

You will submit:

• A .zip file of all files in your ps6 directory, including those that you did not edit.
Please preserve the directory structure of the original release. We should be able to
unzip your submission, use the build game.bat script to build the game, and use
build game.bat to build your bot; in other words, you should modify the build
scripts to include all necessary files.

• Your documentation file, in .pdf format.

• Your written problem, in .pdf format.

Again, we should be able to unzip your submission and use the scripts to compile both
your game and your bots, without errors or warnings. Submissions that do not meet this
criterion will lose points.

18


