
Data Structures and Functional Programming Problem Set 4
CS 3110, Fall 2013 Due at 11:59 PM, Thursday, October 17
Version: 7 Last Modified: October 27, 2013

Instructions

Compile Errors

All code you submit must compile. Programs that do not compile will be heavily penalized. If
your submission does not compile, we will notify you immediately. You will have 48 hours after
the submission date to supply us with a patch. If you do not submit a patch, or if your patched
code does not compile, you will receive an automatic zero.

Naming

We will be using an automatic grading script, so it is crucial that you name your functions and
order their arguments according to the problem set instructions, and that you place the func-
tions in the correct files. Incorrectly named functions are treated as compile errors and you
will have to submit a patch.

Code Style

Finally, please pay attention to style. Refer to the CS 3110 style guide and lecture notes. Ugly
code that is functionally correct may still lose points. Take the extra time to think out the prob-
lems and find the most elegant solutions before coding them up. Good programming style is
important for all assignments throughout the semester.

Late Assignments

Please carefully review the course website’s policy on late assignments, as all assignments handed
in after the deadline will be considered late. Verify on CMS that you have submitted the correct
version, before the deadline. Submitting the incorrect version before the deadline and realizing
that you have done so after the deadline will be counted as a late submission.

Getting started

This problem set is long; we recommend you start thinking about all of the parts early. Parts two
and three depend on part one, but you only need to implement one of the modules (Floats)
in part one to get started on them. The things you have to do are indicated by “Exercise” in the
writeup, and are labeled “TODO” in the release code.

The GUI for this problem set requires some additional OCaml libraries; the file README.txt
in the release contains instructions for compiling and running the project.
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Introduction

In many applications, users want to rearrange a collection of geometric shapes while keeping
them from overlapping with each other. For example, users like to rearrange windows on their
desktops while keeping each window entirely visible. Without an automated way to keep them
from overlapping, users must carefully adjust the boundaries of the windows if they want to
avoid large gaps between the windows. The same user interface feature is useful in other appli-
cations, such as computer aided design, graphics applications, and games.

In this assignment, you will be building a library that allows users to drag and drop shapes
while keeping them from intersecting each other. You will use the library to build a simple
“tangrams” game.

The correctness of geometric algorithms depends on the properties of the numbers used to
represent the coordinates of the shapes. You will implement a variety of number types to inves-
tigate the tradeoffs of various representations.

Finally, this assignment contains a small problem related to mutability.

Part One: Numbers

For this portion of the assignment, you will implement a variety of modules, each defining a
representation of a set of numbers and the operations available for those numbers.

Your number modules will each implement one of the following interfaces (we have provided
these signatures in numbers.ml):

• A Quotient represents a set of elements, which we will refer to as numbers. The only op-
eration provided by Quotient is the (===) function, which defines the notion of equality
for the set of numbers.

• Just as Quotient defines a notion of equality between numbers, Group defines a notion of
addition. In addition to the (+) operation, Group requires a number called zero, and for
each number x, an additive inverse -x. Note that OCaml writes the negation operation as
(~-). That is, (~-) x is the same as -x.

• Ring extends Group by adding a notion of multiplication. It also requires a multiplicative
identity called one.

• A Field is a ring where every number x has a multiplicative inverse x−1. This allows us to
define division: x/y is just x y−1.

• OrderedRing and OrderedField add a notion of ordering to rings and fields respectively.
We only require implementors to provide a function that determines if a number is nega-
tive, but comparison operations like (<) and (>) can be defined in terms of is_non_neg
(you will do this in exercise 2 below).

• NiceRing and NiceField require additional useful functions: the ability to convert a
number to an OCaml float, and a function for printing a numberonto the console. You can
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register these formatting functions with the OCaml toplevel using the #install_printer
command; this will cause the toplevel to use that function to print out values of your num-
ber type. See the toplevel documentation and the documentation for the OCaml Format
module for more details.

These concepts (with the exception of NiceRing and NiceField) are borrowed from the field
of abstract algebra1. In the same way that modular programming allows us to apply single func-
tions to a large number of data types, these modular definitions have allowed algebraists to
prove single theorems that apply to a large number of mathematical structures.

In order for the operations defined by these concepts to make sense, they must obey certain
properties (axioms). For reference, we have provided modules that encode these properties
as functions. For example, the multiplication operation only makes sense if it is commutative,
associative, distributes over addition, and if one is a multiplicative identity. These properties are
tested (for individual numbers) by the times_commutative, times_associative, times_distributive
and times_identity functions. A module R that implements Ring is only valid if for all inputs
a, b, and c, each of the functions of the RingProperties (R) module return true. Similarly, the
other Properties modules (QuotientProperties, GroupProperties, FieldProperties, and
so on) encode the properties of the other module types.

Exercise 1: Simple number types

Implement the following modules and functors in numbers.ml (you may want to implement
some of these in terms of others):

• module Ints : NiceRing, using int as the number type.

• module Integers : NiceRing, using large integers as the number type. You may either
use your implementation of big integers from problem set 2, or OCaml’s built-in Big_int
module.

• module Floats : NiceField, using float as the number type. Because floating point
arithmetic is inexact, you should consider two floats to be equal if they differ by less
than 10−6.

Warning: This should be your only number module that uses the
float type (with the exception of the float_of_number functions).

• module Root23 : NiceRing that contains numbers of the form a + b
p

2 + c
p

3 + d
p

6
where a,b,c and d are integers. In addition to the NiceRing functions, this module should
expose the numbers sqrt2, sqrt3 and sqrt6 representing

p
2,

p
3 and

p
6 respectively.

1note that our groups are technically Abelian groups, and our rings are technically commutative rings with
identity
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Hint 1: a1+a2
p

2+a3
p

3+a6
p

6 is zero if and only if a1, a2, a3 and
a6 are zero. This fact may help you with Root23.(===).

Hint 2: For Root23.is_non_neg, try working out the solution for
numbers of the form a +b

p
2 first, and then writing numbers in the

form (a +b
p

2)+ (c +d
p

2)
p

3.

• module FieldOfFractions (R : NiceRing) : NiceField should represent numbers
as fractions of R.numbers. You are not required to store the fractions in lowest terms.

• module Rationals : NiceField should implement the rational numbers. You are not
required to store the fractions in lowest terms.

• module Rot15 : NiceField should contain the rationals as well as the numbers cos45◦,
sin45◦, cos30◦, and sin30◦.

Hint: these can all be expressed in terms of
p

2 and
p

3.

You may find the include and open statements useful for this problem (and throughout the
remainder of the problem set).

Exercise 2: Implement utility functors

In our definitions of Quotient, Group, Ring and so on, we provided a minimal set of functions;
this makes it easier to implement these interfaces. For example, a module that implements
OrderedRing only needs to provide the is_non_neg function; but when using numbers from
ordered fields, it is useful to have ordering functions such as (>), (<), (>=), and (<=).

Implement the following utility functors in numbers.ml to provide these useful operations:

• module QuotientUtils (Q : Quotient) should define the not-equal function (<>) in
terms of the (===) function on Q.

• module GroupUtils (G : Group) should define the binary (-) function in terms of the
group operations on G.

• module RingUtils (R : Ring) should define the number_of_int function2, which con-
verts an integer into an R.number.

• module FieldUtils (F : Field) defines the division function for F.numbers.

2For those of you who like abstract algebra, the existence and properties of this function means that the integers
are initial in the category of rings
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• module OrderedRingUtils (R : OrderedRing)provides the comparison operations men-
tioned above ((<), (>), (<=) and (>=), min and max). It should also adapt the ordered ring
interface to the standard Set.OrderedType interface, so that elements of an ordered ring
can be used in OCaml Sets and Maps.

• module OrderedFieldUtils (F : OrderedField) should simply combine the opera-
tions from OrderedRingUtils and FieldUtils.

Once you have defined these modules, you can work with the numbers in a given group, ring
or field very easily:

# module R = Numbers.Root23;;
# module RU = Numbers.OrderedRingUtils (R);;
# open R;;
# open RU;;
# #install_printer format;;

# zero;;
- : R.number = 0

# one;;
- : R.number = 1

# one + sqrt2;;
- : R.number = 1+

p
2

# (one + sqrt2) * (one - sqrt3) + one + sqrt2 - sqrt6;;
- : R.number = 2+2

p
2-

p
3-2

p
6

# let x = one + sqrt2;;
val x : R.number = 1+

p
2

# let y = (number_of_int 7) - sqrt6;;
val y : R.number = 7-

p
6

# x * y;;
- : R.number = 7+7

p
2-2

p
3-

p
6

Note: The way that the toplevel displays your output will depend on
your implementation of Root23.format. This function is intended for
your own benefit while debugging; you are free to format your numbers
any way you choose.

Exercise 3: Implement real numbers

Implement arbitrary precision real numbers in numbers.ml. Your implementation should im-
plement the NiceField interface.
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You should provide a function approximate which given an integer k, and a real number x,
produces a rational number that is within 10−k of x. That is,∣∣x− (approximate x k)

∣∣< 10−k

In addition, you should provide a function create that accepts a function f such that the se-
quence f 0, f 1, f 2, . . . converges to a real number x; create f should return x. The input
to create is assumed to converge at a rate of 10−k ; the behavior of create is undefined for se-
quences that do not converge.

Your implementations of (===) and is_non_neg are not required to terminate, but they should
terminate when possible.

Hint: If you get stuck while trying to come up with a representation for
Real.number, think carefully about the types and specifications of create
and approximate. If you can implement these functions well, the rest of
the NiceField operations will follow.

To give you some interesting real numbers to play with, you should provide an exact repre-
sentation of the numbers π and e. There are many techniques for doing so; one possibility is to
use the Taylor series expansions for the arctangent and exponential functions respectively.

Part Two: Geometry

In this portion of the assignment, you will build on the number types you defined in part one to
construct a collision-avoiding drag-and-drop library for convex polygons in the plane.

Note: This portion of the assignment depends on part 1, but you do not
need to implement all of part 1 to get started on part 2. We recommend
that you implement Numbers.Floats first, and use it to get started on this
portion.

Suppose a user clicks on a shape S and drags it from a point x to a point y (see Figure 1.
Suppose further that we wish to prevent S from overlapping with any of the obstacles O1, O2,
. . . , On . If placing S at y does not cause it to intersect the obstacles, then it would make sense to
simply place S at y . However, if placing S at y would cause an intersection, what should we do?

One approach is to place S at the closest point to y that doesn’t cause any overlaps. It turns
out that this specification provides a very natural drag and drop experience, because it allows
the user to easily adjust the position of adjacent objects. This scheme is illustrated in Figure 1.

We can compute these points as follows. When the user clicks on a shape, we compute a
representation of the set of points y such that if S were placed at y , there would be an overlap.
If O =O1∪O2∪·· ·∪On , then this set consists of the points {p−q | p ∈O, q ∈ S}. This is known as
the Minkowski difference of O and S; it is often written O ªS. It is the shaded area in Figure 1.

Whenever the user moves the mouse to a new location y , we can use this representation to
determine whether y ∈ O ªS, and if it is, we can find the closest point to y on the boundary of
O ªS. We can then place S at this point.
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For this project, we will assume that the shape to be dragged and the obstacles are all convex
polygons, represented as lists of points. Points will be represented as pairs of numbers from
a given Numbers.OrderedField. This means that your geometry code must be included in a
functor parameterized on an OrderedField.

Exercise 4: Implement Minkowski difference for convex polygons

In the file geometry.ml, write a function minkowski_difference_convex that computes the
Minkowski difference of two convex polygons represented as point lists.

Computing the Minkowski difference of convex polygons is a straightforward process, be-
cause it is simply the convex hull of the differences of all pairs of polygon corners from each of
the two input polygons. See Figure 2 for an illustration.

We leave it up to you to find and implement an algorithm for computing the convex hull. We
encourage you to use the internet to find an algorithm, and you may even look at open source
implementations if you wish, but you must write your code yourself.

Exercise 5: Implement Minkowski difference

The next step is to compute the Minkowski difference of the dragged shape with the entire set
of obstacles. This can be accomplished by computing the Minkowski difference of the dragged
shape with each obstacle, and the taking the union of the resulting differences.

Computing the union of many polygons is a difficult problem, because the union of two poly-
gons may contain holes, and even degenerate zero or one dimensional holes. These holes are
quite important for drag and drop, because they represent spaces between the obstacles where
one may want to place the dragged shape.

In the Region module we have provided you with an implementation of polygon union. Use
this module to write a function minkowski_difference that computes the Minkowski differ-
ence of a list of obstacles (represented as point lists) with the dragged shape. This function
should return a Region.region.

Part Three: Tangrams

In the last portion of the assignment, you will integrate your geometry code into the tangrams
application.

The logic of the game is very simple; users get a handful of simple shapes which they are
supposed to arrange into a single large shape. The shapes are shown in Figure 3; in fact this
is a screenshot of what you will see as soon as you implement a NiceField and run the user
interface.

7



O1

O2

x

y
S

Figure 1: The positions that the circle S takes as it is dragged along the blue path. The yellow
shapes O1 and O2 are the obstacles. The shaded area contains all points y such that placing S
at y would cause S to intersect one of the obstacles. At each point, the circle is placed at the
closest point to the mouse location that is not in this set. The circle is only for illustration; you
will only be handling polygons.
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Figure 2: The Minkowski difference of convex polygons can be computed by finding the convex
hull of the differences of all pairs of points. In the diagram, xi j = ai −b j .
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Figure 3: The tangrams user interface

Exercise 6: Implement drag and drop

Your goal is to implement the drag and drop behavior for the application in game.ml. The UI
code will call the click, move_to and unclick functions whenever the user performs the cor-
responding actions. It will then call the obstacles and selection functions to determine what
to draw on the screen.

The obstacles function should return the list of undragged polygons, while selection should
return the polygon that is currently being dragged (or None if the user is not currently dragging).
You are also free to return extra points or lines to draw using the extra_points or extra_lines
functions; these will be drawn by the UI and may aid you in debugging.

As described above, when the user clicks, you should compute the Minkowski difference of
the polygon they clicked on with all of the other polygons. When they drag the mouse to a
point p, you should find the closest point to p that is not in that difference (you should use
Region.find_closest for this).

The code that actually constructs and runs the UI is contained in main.ml. If you wish to
test your code with a different number type you should modify that file to load the appropriate
module. You can then build and run the application as described in README.txt in the release
file.
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Part Four: Written questions

Exercise 7: Written questions

Answer these questions in the file written.txt or written.pdf. Don’t forget that most of the
Properties modules include other Properties modules. For example, FieldProperties con-
tains plus_commutative as well as times_commutative, because the FieldProperties extend
the GroupProperties.

(a) We asked you to implement the Ring interface for the Ints and Integers, but integers
also have a built-in division operator (/). If we used integer division to implement the
Field interface, which of the field properties would be violated? Give a set of inputs to the
corresponding FieldProperties function that demonstrate that the property is violated.

(b) If you run your tangrams game using FieldOfFractions(Ints).numbers, you will see strange
behavior. This is because some of the properties of NiceRing are not satisfied by the Ints.
Give a set of inputs and a function from OrderedRingProperties(Ints) that demonstrate
a property that is violated.

(c) Your tangrams game will also not work correctly using the Floats, although you may have
to play with it a bit more to see visible errors. Again, these failures can be ascribed to a
failure to implement the FieldProperties perfectly. Give a set of inputs and the name of a
FieldProperties(Float) function that demonstrate the failure.

(d) Your arbitrary precision real numbers are able to implement every real number exactly. Ex-
plain in one or two sentences why they are not the ideal number implementation for your
tangrams game.
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